An Overview of Jet-Finding Algorithms

By: Vetri Velan March 30, 2016

Outline

- What are jets?
- Requirements for jet-finding algorithms
- Cone algorithms
- Sequential Clustering Algorithms
- Jet Substructure

Disclaimer: Most of this material taken from lectures by Gavin Salam, including many slides (full list of references and hyperlinks at the end of the slides)

- Simple answer: streams of collimated hadronic particles created from quarks or gluons
- Example: $q\bar{q}$ pair created at primary vertex, then these can emit gluons, which emit gluons, etc...

- Simple answer: streams of collimated hadronic particles created from quarks or gluons
- Example: qq̄ pair created at primary vertex, then these can emit gluons, which emit gluons, etc...
- These hadronize and form mesons and baryons

Example at right: 2 clear jets that come back-to-back (as they should)

6

What are jets?

- But this is not so easy
- How many jets are in the figure at right?

- But this is not so easy
- How many jets are in the figure at right?
- Can get much, much worse...

7

8

What are jets?

- To do any type of useful analysis at the LHC (or Tevatron, etc.), we need a better definition of a jet
- One of the first definitions: Sterman and Weinberg, PRL 39, 1436 (1977)
 - Cones of opening angle δ containing all but a fraction $\epsilon \ll 1$ of the total collision energy

- "Snowmass Accord", J. E. Huth et al., "Toward a standardization of jet definitions", FNAL-C-90-249-E
 - 1. Simple to implement in an experimental analysis
 - 2. Simple to implement in theoretical calculation
 - 3. Defined at any order of perturbation theory
 - 4. Yields finite cross sections at any order in perturbation theory
 - 5. Yields a cross section that is relatively insensitive to hadronization
- Michael Tannenbaum: "...read more like legal contracts between experimentalists and theorists than like scientific papers" (PoS, Aug 2007, arXiv:0707.1706)

10

- For our purposes today, we deal with two primary requirements:
 - Infrared safety: Definition of a jet should be insensitive to "soft" (low-energy) gluons emitted by a quark
 - Collinear safety: Definition of a jet should be insensitive to the emission of collinear gluons
 - Often referred to as just "infrared-safety" or "IRC-safety"

Why IR safety?

11

Transition rate (matrix element squared) for gluon emission is proportional to:

$$dS = \frac{2\alpha_{\rm s}C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin\theta} \frac{d\phi}{2\pi}$$

- Singularities at E = 0 (soft gluon) and $\theta = 0, \pi$ (collinear emission)
- These infinities are removed via cancellations in virtual corrections
- IR-safe jet definitions will allow these cancellations to occur → we can calculate jet cross sections using perturbative QCD

Jet-Finding Algorithms

- Purpose: Take data, figure out how many jets, where the jets are, and characterize them (primarily E, p)
- In light of what we've discussed, "jet-finding algorithms" are perhaps better called "jet-defining algorithms"
- Two primary classes of algorithms:
 - Cone algorithms
 - Sequential clustering algorithms

Cone Algorithms

- General idea behind a cone algorithm is to sort the data into "cones" of hadronic particles, and call these jets
- Iterative Cone, Progressive Removal (IC-PR):
 - Take most energetic particle as "seed" for axis of the cone
 - Draw cone around the seed, with some specified radius and angular width
 - Sum the momenta of the particles inside the cone; use the axis of the resultant vector as the axis of a new cone
 - Iterate until the cone is stable, within some precision
 - When stable, call this cone a "jet" and remove from the event; iterate until all particles are split into jets
- Example of IC-PR on next several slides (taken from G. Salam)


```
QCD lecture 4 (p. 27)
```

p _t /GeV	Seed = hardest_particle	One of the simpler cones e.g. CMS iterative cone
60 • 50 •		 Take hardest particle as seed for cone axis
50		Draw cone around seed
40		
30 -		
20 -		
10		
0) 1 2 3 4 $_{\rm y}$	


```
QCD lecture 4 (p. 27)
```



```
QCD lecture 4 (p. 27)
```



```
QCD lecture 4 (p. 27)
```



```
QCD lecture 4 (p. 27)
```



```
QCD lecture 4 (p. 27)
```



```
QCD lecture 4 (p. 27)
```



```
QCD lecture 4 (p. 27)
```



```
QCD lecture 4 (p. 27)
```



```
QCD lecture 4 (p. 27)
```



```
QCD lecture 4 (p. 27)
```



```
QCD lecture 4 (p. 27)
```

Iterative Cone, Prog Removal (IC-PR)

Cone Algorithms

What's wrong with IC-PR? Any guesses?

Cone Algorithms

- What's wrong with IC-PR? Any guesses?
 - Not IR Safe!
 - Not collinear safe, specifically, because the initial seed particle is not collinearsafe
 - Let's see an example:

```
QCD lecture 4 (p. 28)
```



```
QCD lecture 4 (p. 28)
Jets
Cones
```



```
QCD lecture 4 (p. 28)
Jets
Cones
```



```
QCD lecture 4 (p. 28)
```



```
QCD lecture 4 (p. 28)
Jets
Cones
```


QCD lecture 4 (p. 28) L_{Jets} L_{Cones}


```
QCD lecture 4 (p. 28)
Jets
Cones
```



```
QCD lecture 4 (p. 28)
```



```
QCD lecture 4 (p. 28)
```



```
QCD lecture 4 (p. 28)
```



```
QCD lecture 4 (p. 28)
```


Cone Algorithms

- Can we modify the ICPR algorithm to be IR safe?
- As far as I can tell, the answer was no...until 2007
- Seedless Infrared-Safe Cone (SISCone) algorithm developed by G. Salam and G. Soyez
 - A cone algorithm that finds all stable cones without using an IR-unsafe seed; instead it considers all subsets of particles and checks if each corresponds to a stable cone
 - Doing this by brute force would be $O(N2^N)$, but SISCone method is $O(N^2 \ln N)$

SISCone

- Rough idea of the general SISCone algorithm
- For more specifics, see Salam Soyez JHEP 05 (2007) 086
- <u>https://siscone.he</u> pforge.org/algorit <u>hm.html</u>

Cone Algorithms

- What other issues are there with cone algorithms?
 - IR-unsafe \rightarrow Fixed
 - Long computation time
 → Fixed
 - Some cone algorithms give jets in y-φ plane that are not circular
 - Why do jets need to be circular? Useful for acceptance corrections, modeling backgrounds

Sequential Clustering Algorithms

 Sequential clustering algorithms (also called sequential recombination algorithms) work by comparing pairs of particles and combining them recursively, according to given rules

Sequential Clustering Algorithms

- Inclusive k_T algorithm
 - Developed by S.D. Ellis and Soper, 1993
 - Choose some "cutoff" angular radius R
 - Go through each pair of events
 - Define $\Delta R_{ij}^2 = (y_i y_j)^2 + (\phi_i \phi_j)^2$
 - Define $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}$
 - Define $d_{iB} = p_{ti}^2$
 - Compare d_{ij}, d_{iB}
 - If $d_{ij} < d_{iB}$, combine the particles
 - If $d_{ij} > d_{iB}$, call particle *i* a jet and remove from particle list
 - Repeat until no particles left
- Example:

Sequential recombination

k_t alg.: Find smallest of $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$ If d_{ij} recombine; if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 0.7

 ϕ assumed 0 for all towers

Sequential recombination

Sequential recombination

v

 k_t alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , i is a jet Example clustering with k_t algorithm, R = 0.7

 ϕ assumed 0 for all towers

Sequential recombination

Sequential recombination

v

k_t **alg.:** Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

 ϕ assumed 0 for all towers

Sequential recombination

Sequential recombination

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

 ϕ assumed 0 for all towers
Sequential recombination

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

Sequential recombination

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

Sequential recombination

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

Sequential recombination

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

Sequential recombination

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

Sequential recombination

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

Sequential recombination

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

v

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

k_t alg.: Find smallest of $d_{ij} = \min(k_{ti}^2, k_{tj}^2)\Delta R_{ij}^2/R^2, \quad d_{iB} = k_{ti}^2$ If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

k_t alg.: Find smallest of $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$ If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

- Comments on Inclusive k_T algorithm
 - Implicitly inverting branching process by pairing up particles with the strongest divergence between them
 - Jets all separated by at least R on y, ϕ cylinder
 - Number of jets is NOT IR-safe (there could be soft jets near the beam), but the number of jets above the p_T cut is IR safe
 - Used to be slow O(N³), but use of computational geometry methods has reduced time to O(N ln N)
 - Jet boundaries are generally not circular; they have irregular shapes

- Modifications to Inclusive k_T algorithm
- Cambridge/Aachen method
 - Again, define $\Delta R_{ij}^2 = (y_i y_j)^2 + (\phi_i \phi_j)^2$
 - Recombine pair of objects closest in ΔR_{ij} , repeat until all $\Delta R_{ij} > R$, whatever remains are jets
 - Privileges the collinear divergence at the expense of the soft divergence
 - Non-circular jet boundaries

- Modifications to Inclusive k_T algorithm
- Anti- k_T method
 - Again, define $\Delta R_{ij}^2 = (y_i y_j)^2 + (\phi_i \phi_j)^2$

• Define
$$d_{ij} = \frac{1}{\max(p_{ti'}^2 p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}$$

• Define
$$d_{iB} = \frac{1}{p_{ti}^2}$$

- Compare d_{ij} , d_{iB}
 - If $d_{ij} < d_{iB}$, combine the particles
 - If $d_{ij} > d_{iB}$, call particle *i* a jet and remove from particle list
 - Repeat until no particles left
- Again privileges collinear divergences over soft divergences
- Clusterings are centered on hard (high-energy) particles
- Jets are cone-like, and have circular boundaries!

Clustering grows around hard cores $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$

Clustering grows around hard cores $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$

Clustering grows around hard cores $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$

Clustering grows around hard cores $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$

Clustering grows around hard cores $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$

Clustering grows around hard cores $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$

Clustering grows around hard cores $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$

Clustering grows around hard cores

$$_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$$

Anti-kt gives circular jets ("cone-like") in a way that's infrared safe

How do we choose jet radius R?

107

- Answer: it depends on what effects are most important to us!
- Suppose the dominant effect we want to study is non-perturbative fragmentation—then large jet radius is good because it captures more

Large jet radius

- How do we choose jet radius R?
- Usually, two requirements that we desire in a jet-finding algorithm (not listed earlier) are minimal sensitivity to pileup and underlying event
- In that case, small jet radius is good because it captures less
- Analyses have shown anti- k_T algorithm is insensitive to pileup and UE

Small jet radius

Large jet radius

108
- Jet-finding algorithms give us information about energies and momenta of jets as a whole
- Can they also help us find information about partons within a jet?
 - Yes, but some algorithms are better than other
- All algorithms give the same final jet, but can they be undone to give information about partons?
- Consider sequential clustering algorithms because cone algorithms do not build up jets piece-by-piece

- Consider the following data at right:
- We would probably like to consider this as two partons at y = 1.75 and 3, and some soft junk

- Consider the following data at right:
- We would probably like to consider this as two partons at y = 1.75 and 3, and some soft junk
- Use anti- k_T algorithm
- Algorithm works through both "blobs" without considering them as separate partons
- Not very useful

112

- Consider the following data at right:
- We would probably like to consider this as two partons at y = 1.75 and 3, and some soft junk
- Use k_T algorithm
- Clusters soft particles early in the algorithm
- Last step is to merge two hard pieces
- This is good! We have two partons. But could the soft "junk" be removed?

113

- Consider the following data at right:
- We would probably like to consider this as two partons at y = 1.75 and 3, and some soft junk
- Use Cambridge/Aachen algorithm
- Identifies hard "blobs" without soft particles, then throws in soft particles at the end
- Running backwards, we reject soft particles, then separate data into partons

Summary

- Physical jets do not always correspond to jets in a computational analysis; need to create jet definitions
- Jet-finding algorithms actually define jets and sort data according to these rules
- Cone algorithms: nice for experimental purposes (circular jets), but until recently, not IR safe
- Sequential clustering algorithms: IR safe, fairly simple to implement, and are now computationally fast
- Anti-k_T algorithm seems to be the best choice for many hadron collider purposes, but to study jet substructure, Cambridge/Aachen offers the best results

References

- 1. G. Salam. "Basics of QCD: Jets and Jet Substructure". ICTP-SAIFR school on QCD/LHC Physics. July 2015, Sao Paulo, Brazil. <u>https://gsalam.web.cern.ch/gsalam/repository/talks/2015-SaoPaulo-lecture4.pdf</u>
- 2. G. Salam. "QCD, Lecture 4". European School of High-Energy Physics. June 2009, Bautzen, Germany. https://gsalam.web.cern.ch/gsalam/repository/talks/2009-Bautzen-lecture4.pdf
- 3. P. Schieferdecker. "Jet Algorithms". April 2009. <u>https://twiki.cern.ch/twiki/bin/viewfile/Sandbox/Lecture?rev=1;filename=Philipp</u> <u>Schieferdeckers_Lecture.pdf</u>
- 4. A. Banfi. "Jet Algorithms". October 2011. https://people.phys.ethz.ch/~banfi/Lectures/jets/jet_algorithms_1.pdf
- G. Salam. "QCD at Hadron Colliders, Lecture 2". Maria Laach Herbtschule f
 ür Hochenenergiephysik. September 2010. <u>https://gsalam.web.cern.ch/gsalam/repository/talks/2010-MariaLaach-lecture2.pdf</u>

Note: Many slides taken from sources [1] and [2]

Further Reading

List of talks (lectures, summer schools, etc.) by Gavin Salam: https://gsalam.web.cern.ch/gsalam/teaching/PhD-courses.html

Snowmass Accord: <u>http://inspirehep.net/record/303065/files/fermilab-conf-90-</u> 249.pdf

Original proposal of anti-k_T algorithm: <u>http://arxiv.org/pdf/0802.1189v2.pdf</u>

Resources on SISCone Algorithm: <u>http://arxiv.org/pdf/0704.0292v2.pdf</u> <u>https://siscone.hepforge.org/algorithm.html</u>

New J_{ET} algorithm: <u>http://arxiv.org/pdf/1411.3705v1.pdf</u>