


How to Unitarize the 
Sommerfeld Enhancement

Tracy Slatyer 

Unraveling the Particle World and the Cosmos 
@Berkeley 

28 September 2024



The unitarity bound
There is a mass-dependent hard upper limit on annihilation (or scattering) rates, 
based on unitary evolution / probability conservation - can be derived from optical 
theorem 

Performing a partial-wave decomposition, the lth partial wave contributes a 
maximum total scattering cross section (for distinguishable particles): 

Familiar from quantum mechanics: 

For inelastic processes the bound is a factor of 4 lower 

Often framed as a limit on the dark matter mass (provided we can limit # of partial 
waves that contribute) - for sufficiently heavy DM, unitarity upper bound is too 
small to allow efficient depletion through annihilation in the early universe [see e.g. 
Smirnov & Beacom ’19], so thermal freezeout scenarios overpredict DM density
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The Sommerfeld 
enhancement

Basic idea: long-range attractive interactions 
[studied for Coulomb potential by Sommerfeld 
1931] enhance short-range interactions 

Implications for heavy weakly interacting 
massive particle (WIMP) dark matter pointed 
out by Hisano et al hep-ph/0307216, hep-ph/
0412403 

DM annihilation could be significantly 
enhanced by a long-range attractive interaction 
mediated by lighter particles, either new 
mediators or W/Z bosons (for heavy WIMPs) 

This is a low-velocity enhancement: classically, 
requires potential energy  kinetic energy 

Akin to classical gravitational focusing effect
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Standard calculation of the 
Sommerfeld enhancement

Evaluate the potential from non-
relativistic limit of perturbative QFT, 
matched to the Born approximation 

Solve Schrödinger equation for two-
particle state of incoming DM 
particles, obtain wavefunction   
(r=distance between particles) 

Annihilation process is high-scale 
i.e. short-range, so enhancement to 
amplitude can be estimated from 

 

s-wave case: 
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Example of 
Sommerfeld 
enhancement at 
fixed DM velocity 

As mA → 0,  
S → π α/vrel, 
α = g2/4π

Arkani-Hamed, Finkbeiner, 
TRS & Weiner ‘08

S = | (0)|2
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Multi-state Sommerfeld 
enhancement

There may be multiple two-particle 
states that are coupled by the 
potential
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phase space integral constants needed to properly 
normalize two-body states with 
identical/non-identical particles

wavefunction for two-body state i 
acts as weighting function

matrix elements for annihilation of 
two-body state i to final state f

“annihilation matrix” determined by 
phase space integral over products 

of matrix elements
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Generally requires mass difference vs DM-DM 
state to be smaller than scale of potential 
energy 

Occurs naturally for the case of few-TeV wino 
dark matter: mass splitting , potential 
energy scale 
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Treat with non-relativistic QM: 
wavefunction becomes vector, 
potential represented by matrix

Γ



Resonances
Attractive Coulomb potential (s-wave): 

 

Attractive Yukawa potential - no exact solution, but can  
be approximated analytically (s-wave): 
 

 

On resonance, enhancement , vs 1/v off-resonance 

Physical origin of resonances = parameters where new bound states enter the 
spectrum / a zero-energy “bound” state exists
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Unitarity violations?
Problem (s-wave):   on resonance, 
but unitarity puts an upper bound on  that 
scales as   

If unitarity appears to be violated then it usually 
signals a problem in the calculation / breakdown 
of an approximation 

e.g. annihilation through a s-channel 
resonance appears to diverge as propagator 
goes on-shell  need to take into account 
width of mediator, which regulates propagator

σv ∝ 1/v2

σ
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⇒

Q: What approximation breaks down in the standard Sommerfeld calculation? 

A: Ignoring the annihilation when we solve for the wavefunction

1
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Correcting the Sommerfeld 
enhancement (2016)

Blum, Sato & TRS 1603.01383: model physics responsible for 
annihilation as complex delta-function potential 

This is also the approach taken in the initial work by Hisano et al hep-
ph/0412403, valid for l=0 (they then expanded to lowest order in the 
annihilation rate) 

Re-solve Schrödinger equation with additional complex potential term; 
in general need to renormalize delta-function contribution, calibrate to 
cross sections measured at high momentum

derive from long-range potentialassociated with short-range physics



Correcting the Sommerfeld 
enhancement (2024a)

Flores & Petraki 2405.02222 take a different approach, still modeling all 
physics in terms of a complex potential but using the optical theorem 

Resum real part of potential but treat imaginary part perturbatively 

Calculation done for single-state case (allows for multiple annihilation 
channels) 

Works for all partial waves, no restriction to contact interactions 

Simplest version of result for regulated amplitude is: 

 
but doesn’t apply to contact interactions / amplitudes that fall off too 
slowly at large momentum



Correcting the Sommerfeld 
enhancement (2024b)

New work by Parikh, Sato & TRS (2410.XXXXX, to appear) 

Stick to non-relativistic quantum mechanics framework but avoid non-
Hermitian potential 

Works for all partial waves and for multi-state systems, provided we can 
assume that annihilation/absorptive physics is localized to r < a for some 
matching radius a 

Position-space matching approach initially motivated by Agrawal et al 
2003.00021 (which used a similar approach to study scattering in 
apparently-singular potentials) 

General idea: use non-relativistic QM for r > a, for r < a match onto 
appropriate QFT S-matrix (calculated perturbatively)



High-scale physics = 
modified boundary conditions

Standard wavefunction calculation imposes regularity at r=0 

We instead impose BCs at a matching radius r=a, set by energy scale of short-range physics (e.g. for 
annihilation ); BCs determined by short-range S-matrix 

Nonperturbative evolution from r=a to r=  resums effects of long-range potential 

a ∼ 1/MDM
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Solving for the wavefunction 
with modified BCs

Solve standard Schrödinger equation from  

Standard solution  = incoming plane wave with standard normalization, regular as  

2nd order linear ODE = 2 independent solutions, pick one other to form a basis 

We use irregular solution that is purely outgoing ( ) as  , with simple 
normalization at r=0, denote  

Full solution:  (has correct normalization for incoming wave) 
Adjust factor R to match desired boundary conditions at r=a 

Can read off the outgoing wave and hence S-matrix in terms of the baseline S-matrix (what 
we would get with R=0) and R

r = a → ∞

w(r) r → 0

∝ eipr r → ∞
w̃(r)

u(r) = w(r) + Rw̃(r)

u(r) →
1
2i ((−i)ℓSℓeipr − iℓe−ipr), r → ∞

S = S0(1 + 2ipℓRΣ*0 )
baseline S-matrix

full S-matrix

Sommerfeld factor 

encodes short-
distance physics



Matching modified BCs to 
the short-range S-matrix

Short-range S-matrix / scattering amplitude encodes what 
happens if you send in a plane wave from r=a to r=0 and 
measure outgoing wave at r=a 

Match value and first derivative of wavefunction at r=a to 
 

Solve for R in terms of fs, plug into expression for S-matrix, do 
algebra (matrix algebra in multi-state case)

C(sℓ(pr) + fsp(cℓ(pr) + isℓ(pr)))

constant scattering 
amplitude

partial wave components of plane 
wave (cos-like and sin-like)



Corrected S-matrix
After the dust clears, this is what the full multi-state result 
for the S-matrix looks like:

 can be thought of as a corrected short-range amplitude (corrected by the long-range potential) 

 = standard Sommerfeld factor matrix (for amplitude, not cross section) 

 = diagonal matrices encoding momentum factors 

 = short-range amplitude after removing any contribution already included in the “long-range 
potential” used to compute  

 = matrices that can be read off from  solutions, sensitive to matching 
radius but not to short-range amplitude

κℓ

Σ0,ℓ

P, P̃

̂fs
w(r), w̃(r)

αb,ℓ(0), αG̃ℓ
(a) w(r), w̃(r)



Corrected cross-section
General result (i indexes the initial two-body state): 

 

Annihilation rate is encoded in apparent non-unitarity of full S-matrix 
element (because we have truncated the S-matrix to the space of 
non-relativistic two-particle states in the QM calculation) 

If all the absorptive physics is short-distance, we can assume  
(S-matrix with only long-range potential) is unitary 

Then in terms of the “corrected short-distance amplitude” , we get: 

σi,ann = ci
π
p2
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ℓ

(2ℓ + 1)(1 − S†
ℓSℓ)ii

S0,ℓ

κℓ

identical-particle factor

(σi,annvrel)ℓ = ci
4πi

MDM
(2ℓ + 1)[Σ†

ℓ(κ†
ℓ − κℓ)Σℓ]ii

, Σℓ = [1 − iΣ0,ℓP2Σ†
0,ℓκℓ]

−1
Σ0,ℓ

full S-matrix

corrected Sommerfeld enhancement



Checking unitarity
There are long-range corrections encoded in  but they’re not 
necessary to confirm the preservation of unitarity 

Single-state case:  

 

When the Sommerfeld enhancement becomes very large, so 
does the denominator term, and drives the final result below 
(often well below) the unitarity bound
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Square well example 
(single-state, l=0,1,2)

The finite square well is analytically 
solvable and supports bound states. Zero-
energy bound states yield resonances. 

In this case the whole calculation can be 
done analytically, take  limit. 

Short-distance amplitude set arbitrarily 
here. Real part of amplitude responsible 
for shift in resonance position.
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Wino example  
(multi-state, l=0)

A more physical example is the wino (fermion DM in triplet of 
SU(2)W) 

First s-wave resonance around 2.5 TeV (using NLO potential 
derived in Beneke et al 1909.04584)

vrel=10-4
vrel=10-7



Velocity dependence
Plot shows velocity 
dependence of cross 
section 
(uncorrected=dot-
dashed, corrected 
=solid) 

Hitting unitarity 
causes enhancement 
to saturate (does not 
continue to follow 
unitarity bound at 
lower velocity)

Asymptotic low-velocity value at resonance consistent with calculation 
of zero-range effective field theory for wino (ZREFT) from Braaten et al 
1712.07142



Phenomenological 
implications?

Not relevant for indirect detection of 
wino - for parameter space where this 
correction matters, strongly excluded 
already (by gamma-rays/antiprotons) 

Possibly an issue for higher-mass DM, 
where cross sections approaching the 
unitarity bound at freezeout are needed 
to yield correct relic density 

Also potentially relevant for scenarios 
with larger coupling - cross section 
closer to unitarity bound without 
requiring strong resonant enhancement

Cohen, TRS et al 1307.4082

Cuoco et al 1711.05274



Summary
The standard calculation of the Sommerfeld 
enhancement leads to apparent violation of unitarity on 
resonance peaks 

This is a consequence of solving for the wavefunction 
deformation by the long-range potential without 
accounting for probability loss to annihilation 

Multiple methods to unitarize the calculation; we have 
shown how to modify the non-relativistic QM calculation 
to account for a hard/short-range annihilation process, 
viable for multi-state systems and arbitrary partial waves



Backup slides



The meaning of the  factorsα
Earlier: “  = matrices that can be read off from  solutions, 
sensitive to matching radius but not to short-range amplitude” 

What is the intuition for these objects? 

Suppose at each r we separate the wavefunction into a “incoming plane wave” 
component and a “purely outgoing wave” component (by matching values+1st 
derivatives) 

 tells us about how much the ‘incoming plane wave’ component grows 
from r=a to r=0, in the regular solution for the long-range potential (goes to  
when there is no evolution between r=0 and r=a) 

 tells us about the size of the ‘incoming plane wave’ component at r=a in 
the solution for the long-range potential that is purely outgoing at infinity (goes to 
zero when long-range potential is negligible)

αb,ℓ(0), αG̃ℓ
(a) w(r), w̃(r)

αb,ℓ(0)
p

αG̃ℓ
(a)



Bound states and final-
state Sommerfeld effects

This method is a good fit for scenarios where the DM “annihilates” into only 
a slightly lighter state and so the final state also experiences Sommerfeld 
enhancement - just use multi-state formalism 

Formation of bound states via radiation of light mediator is also generically 
present and should contribute to possible final states / inclusive cross 
section - will suppress annihilation rate further when rates approach 
unitarity 

Work by [] finds cases where this process appears to violate unitarity - can 
happen because bound-state formation is treated perturbatively, not 
included in wavefunction calculation 

Not an obvious fit for this approach because there is not a clear separation 
of scales (bound-state formation process is not short-range/high-energy); 
Petraki & Flores ’24 approach using optical theorem may be a better fit


