Unravelling the Particle World and the Cosmos at Berkeley Sep. 28th, 2024

Higgs and Z₂ symmetry

Keisuke Harigaya (U Chicago)

Hitoshi, particle, and cosmos

"Mystery of missing antimatter"

Oct. 25th, 2008 at the University of Tokyo

Kavli IPMU 4th anniversary

14

Reading club

Robert Cahn and Gerson Goldhaber

The Experimental Foundations of **Particle Physics**

SECOND EDITION

Hitoshi organized a weekly reading club for first-year Ph.D students

We learned the use of symmetry, the Standard Model (except for Higgs), etc.

Berkeley and Kavli IPMU

2013? at Kyoto

2016 Berkeley-IPMU week

Berkeley and Kavli IPMU

2018 Berkeley-IPMU week

Working with Lawrence

Development in QCD axion cosmology with Lawrence, Raymond Co, Aaron Pierce, ...

Raymond Co's talk

Outline

* Z2 symmetry of Higgs and its spontaneous breaking, how it is correlated with Standard Model parameters

* Parity, SO(10), and dark matter

Z₂ symmetry of Higgs

Standard Model Higgs H $SU(2)_{I}$ doublet

* If Z_2 introduces the mirror copy of the SM, dark matter candidates Mirror baryons, electrons, atoms, ... $SU(3)_{C} \times SU(2)_{L} \times U(1)_{V} \times (SU(3)_{C} \times SU(2)_{L} \times U(1)_{V})'$ Goldberg and Hall (1986)

* If Z_2 involves space-time parity, the strong CP problem can be solved Babu and Mohapatra (1989), Barr, Chang and Senjanovic (1991), Hall and KH (2018,2019)

 $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_X$ $SU(3)_C \times SU(2)_L \times U(1)_Y \times SU(2)'_L \times U(1)'_Y$

Z_2 symmetry

Its Z_2 partner H' $SU(2)'_{L}$ doublet

Z, needs to be broken

mirror atom dark matter would be too strongly self-interesting

to SM particles

 $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(2)_R$

 $SU(3)_c \times SU(2)_L \times U(1)_Y \times SU(2)'_L \times U(1)'_Y \quad m_{q'} = m_q$

* For mirror Z_2 , there would be too much extra radiation in the universe. Also, $\sigma_{\rm atom} \sim \frac{1}{m_{\alpha'}^2 \alpha^2}$ * For space-time parity, there would too light particles that has O(I) coupling

$$(1)_X \qquad m_{W_R} = m_{W_L}$$

Z and vanishing SM Higgs quartic

In 2017, we found a relation between the vanishing quartic coupling and Z₂ symmetry

Higgs potential parity $V = \left(\lambda |H|^4 - m^2 |H|^2\right) + \left(\lambda |H'|^4 - m^2 |H'|^2\right) + \tilde{y} |H|^2 |H'|^2$ $= \lambda \left(|H|^{2} + |H'|^{2} - v'^{2} \right)^{2} + y |H|^{2} |H'|^{2}$ Can we find the minimum with $\langle H \rangle \ll \langle H' \rangle$? H_L 0 H_R

y > 0 H $\bigstar < H' > = 0$ < H > = 0

 $0 \neq \langle H \rangle \ll \langle H' \rangle$

 $\rightarrow H'$

Prediction on the quartic coupling Hall, KH (2018) $V \simeq \lambda (|H|^2 + |H'|^2 - v'^2)^2 + \text{small corrections}$

symmetry rotating the vector (H, H')

associated with symmetry breaking by $\langle H' \rangle = v'$

Standard Model Higgs is a (pseudo) Nambu-Goldstone boson

(up to calculable threshold correction)

Vanishing quartic coupling

Buttazzo et.al (2013)

Fine-tuning $V = \lambda \left(|H|^2 + |H'|^2 - v'^2 \right)^2 + y |H|^2 |H'|^2$ $2_{\rm cut}$

Despite the intermediate scale v', same as that of standard model

Generic Z₂ The scheme is applicable to generic models with the SM Higgs H and its Z2 partner H'

Higgs Parity

Mirror Z2, Left-Right symmetry with or without space-time parity,

Precise measurement and Z₂ Hall and KH (2018, 2019) Dunsky, Hall and KH (2019, 2020, 2022) Carrasco-Martinez, Dunsky, Hall and KH (2023)

top quark mass Higgs mass strong coupling constant

Z2 symmetry breaking scale

Precise measurement and new physics

top quark mass Higgs mass strong coupling constant

> Z2 symmetry breaking scale

Hall and KH (2018, 2019) Dunsky, Hall and KH (2019, 2020, 2022) Carrasco-Martinez, Dunsky, Hall and KH (2023)

Dark matter and its detection, gauge coupling unification and proton decay, baryogenesis, ...

Precise measurement and new physics

2023 at Flatiron Institute

Hall and KH (2018, 2019) Dunsky, Hall and KH (2019, 2020, 2022) Carrasco-Martinez, Dunsky, Hall and KH (2023)

Dark matter and its detection, gauge coupling unification and proton decay, baryogenesis, ...

Z2 symmetries

* Mirror Z₂ $SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y} \times (SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y})'$ * Left-Right symmetry $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_X$ * Left-Right Parity $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_X$ * Mirror Parity $SU(3)_C \times SU(2)_L \times U(1)_V \times SU(2)_L \times U(1)_V$

 $2)_L \times U(1)_Y)' \qquad e' \text{ dark matter, dark radiation,} \\ GWs from mirror QCD PT$

SO(10) unification, leptogenesis, right-handed neutrino DM

above + solving strong CP problem

e' dark matter, solving strong CP problem

Z2 symmetries

* Mirror Z₂ e' dark matter, dark radiation, $SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y} \times (SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y})'$ GWs from mirror QCD PT * Left-Right symmetry SO(10) unification, leptogenesis, $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_X$ right-handed neutrino DM * Left-Right Parity $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_X$ above + solving strong CP problem * Mirror Parity $SU(3)_C \times SU(2)_L \times U(1)_V \times SU(2)_L \times U(1)_V$ e' dark matter, solving strong CP problem

Outline

* Z2 symmetry of Higgs and its spontaneous breaking * Parity, SO(10), and dark matter

The strong CP problem Neutron Electric Dipole Moment $H = d_n \vec{E} \cdot \vec{S}$ $d_n/e \sim 0.1 \text{ fm} \sim 10^{-14} \text{ cm} ?$

$d_n/e < 2.9 \times 10^{-26} \text{ cm}$ Baker et.al (2006)

Suggests CP symmetry

CP is not preserved in SM $\mathscr{L} = y_{ij}^{u} H^{\dagger} q_{i} \bar{u}_{j} + y_{ij}^{d} H q_{i} \bar{d}_{j} + \frac{\theta_{\text{QCD}}}{32\pi^{2}} G\tilde{G}$ CP violation

 $d_n/e \simeq 5 \times 10^{-16} \bar{\theta} \, \mathrm{cm}$ Crewther, Vecchia and Witten (1979)

observed $\theta_{\rm CKM} = O(1) \longrightarrow y^{u,d}$ must have O(1) complex phases CP is violated

 $\bar{\theta} = \operatorname{argdet}(m^u m^d) + \theta_{OCD} < 10^{-10}$

The strong CP problem

Parity symmetry can forbid the neutron electric dipole moment

Left-Right Parity $SU(3)_{c} \times SU(2)_{L} \times SU(2)_{R} \times U(1)_{X} \times P_{LR}$

q = (u, d) $(3,2_L,1,1/6)$ $\ell = (\nu, e)$ H_L $(1,2_I,1,-1/2)$

 $q(t,x) \leftrightarrow i\sigma_2 \bar{q}^*(t,-x)$

Parity

 $\bar{q} = (\bar{u}, \bar{d})$ $(\bar{3}, 1, 2_R, -1/6)$ $\bar{\ell} = (\bar{N}, \bar{e})$ H_R $(1,1,2_R,1/2)$

Left-Right Parity

Mystery of missing antimatter (2008)

消えた反物質

q = (u, d)

 $(3,2_L,1,1/6)$

 $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_X \times P_{LR}$

 $\bar{q} = (\bar{u}, \bar{d})$ $(\bar{3}, 1, 2_R, -1/6)$ $\bar{\ell} = (\bar{N}, \bar{\ell})$ H_R $(1, 1, 2_R, 1/2)$

Carrasco-Martinez, Dunsky, Hall and KH (2023)

Left-Right Parity $SU(3)_{c} \times SU(2)_{L} \times SU(2)_{R} \times U(1)_{X} \times P_{LR}$ $\bar{q} = (\bar{u}, \bar{d})$ Parity $(\bar{3}, 1, 2_R, -1/6)$ $\bar{\ell} = (\bar{N}, \bar{e})$ H_R H_R $(1,1,2_R,1/2)$

q = (u, d) $(3,2_I,1,1/6)$ $\ell = (\nu, e)$ H_L $(1,2_L,1,-1/2)$

 $SU(3)_c \times SU(2)_L \times U(1)_Y$

 H_L

 $SU(3)_c \times U(1)_{\rm EM}$

Left-Right in SO(10)

SO(10) contains left-right symmetry without space-time inversion

 $\psi_{16} = (\ell, \ell, q, \bar{q})$ $H_{16} = (H_L, H_R, H_R^c, H_R^c)$

 C_{LR} is spontaneously broken

 $C_{LR}: q \leftrightarrow \bar{q}, \ell \leftrightarrow \bar{\ell}$

SO(10) $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_X$

 H_{45}

Left-Right Parity in SO(10)

Add CP: $\psi_{16}(t, x) \rightarrow i\sigma_2 \psi_{16}^*(t, -x)$

 $C_{\text{LR}}: q \leftrightarrow \bar{q}, \ell \leftrightarrow \bar{\ell}$

(CP and C_{LR}) = P_{LR} : $q(t, x) \leftrightarrow i\sigma_2 \bar{q}^*(t, -x), \ell(t, x) \leftrightarrow i\sigma_2 \bar{\ell}^*(t, -x)$

 $SO(10) \times CP$ \longrightarrow $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_X \times P_{LR}$

assuming H_{45} is CP odd

Coupling unification

Hall, KH (2018, 2019)

energy-dependent couplings

Quantify unification

10¹³

Hall, KH (2019)

There can be quantum corrections from heavy particles around the GUT scale

$$\Delta = \max_{i,j}$$

$$\frac{2}{8\pi^2}$$

typically

 8π

 g_i^2

$$\Delta = \text{few} - 10$$

(smaller than SUSY GUT)

* One of the right-handed neutrinos? Difficult because of the up-neutrino unification * Dark sector? * Free massive scalar? * A new particle with non-trivial electroweak charge?

Dark Matter?

DM in 10

Let us add a fermion χ in 10 of SO(10)

	ΧD	$\chi_{ar D}$	χ_L	$\chi_{\bar{L}}$	
<i>SU</i> (3)	3	3			
<i>SU</i> (2)			2	2	
<i>U</i> (1)	-1/3	1/3	-1/2	1/2	

Higgsino-like DM

Higgsino-like DM

Freeze-out mechanism : $m_L \simeq 1$ TeV

It should not remain a Dirac fermion in order to avoid direct detection bound

Add a mixing with a singlet that has a Majorana mass

XL

SM

XY

	XD	$\chi_{ar{D}}$	χ_L	$\chi_{\bar{L}}$	
<i>SU</i> (3)	3	3			
<i>SU</i> (2)			2	2	
U (1)	-1/3	1/3	-1/2	1/2	

XD

Colored partner

The lifetime is longer than the age of the universe if $m_D \sim \text{TeV}$

Exotic stable relic

 $\Omega_{\chi_D\chi_D\chi_D}h^2 \sim 0$

- χ_D annihilation freezes-out around $T \sim 0.1 m_D$
 - They re-annihilate around the QCD PT
 - $\chi_D \bar{u} + \chi_{\bar{D}} u \to SM$
 - $\chi_D \chi_D u + \chi_D \bar{u} \rightarrow \chi_D \chi_D \chi_D + SM$
- Majority of them end up in $\chi_D \chi_D \chi_D$, as $\chi_D \bar{u}$ etc has large radius

$$0.1 \left(\frac{m_D}{10 \text{ TeV}}\right)^2 \text{ De Luca et.al (2018)}$$

Charged particles with such large abundance is excluded by heavy isotope searches

Splitting by missing VEV

By giving mass to χ by H_{45} maybe large mass splitting can be achieved Baldwin and KH (2024)

(Models with small enough quantum corrections need one more 10-plet)

 $\langle H_{45} \rangle = -iv_{45} \times \begin{pmatrix} \sigma_2 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0_{4 \times 6} \\ 0 & 0 & \sigma_2 \\ 0_{6 \times 4} & 0_{4 \times 4} \end{pmatrix}$

$SU(2)_R$ symmetry

 $\chi^{1-6}: \chi_{D,\bar{D}}, \chi^{7-10}: \chi_{L,\bar{L}}$

See Dimopoulos and Wilczek (1981) for models with SUSY protection

 $\frac{\rho_{\rm DM}}{s} \simeq 0.4 \text{ eV} \left(\frac{m_L}{100 \text{ GeV}}\right)^3 \frac{0.05 \text{ GeV}}{T_{\rm dec}}$

Lower bound on the mass

DM overproduction SM

 $m_D > 3 \times 10^9 \text{ GeV} \times \left(\frac{m_{XY}}{10^{16} \text{GeV}}\right)^{4/5} \left(\frac{m_L}{100 \text{GeV}}\right)^{6/5}$

Baldwin and KH (2024)

Summary

* Z2 symmetry of Higgs is phenomenologically interesting

- the SM parameters
- * Combined with space-time parity, the strong CP problem can be solved
- * Implications to SO(10) unification, dark matter detections, etc.

* The breaking scale of a class of Z2 symmetry, Higgs Parity, is correlated with

Back up

Fermion masses

X: 10 for down and electron, 45 or 54 for up and neutrino

 $xH_{16}\psi_{16}X + \frac{1}{2}m_XX^2$

 $\frac{H_{45}}{M}H_{16}\psi_{16}X + \frac{1}{2}i\lambda H_{45}X^2$

CKM phase

 $xH_{16}\psi_{16}X + \frac{1}{2}m_XX^2$

CP requires that x and m_X are real

 $\chi^a \chi^b H^{ac}_{45} H^{bc}_{45} \longrightarrow \chi^a \chi^a H^{bc}_{45} H^{bc}_{45}$

So let us introduce two fermions : χ_1 and χ_2

Setup

$\chi^a \chi^b H_{45}^{ab}$ identically vanishes

quantum correction

 $\lambda \chi_1^a \chi_2^b H_{45}^{ab} + \frac{1}{2} M_2 \chi_2^a \chi_2^a$

For example, for $\lambda v_{45} < M_2$,

Setup

 $\chi_2 = M_2$ $\chi_{D_1} - \frac{\lambda^2 v_{45}^2 / M_2}{M_2}$

 χ_{L_1}

Corrections

 $\lambda \chi_1^a \chi_2^b H_{45}^{ab} + \frac{1}{2} M_2 \chi_2^a \chi_2^a$

Ignoring the second terms, corrections always involve odd number of H_{45}

Two of the indices of H_{45} s must be contracted with χ

Correction to χ_L mass vanishes

The first term preserve Z_4 under which $\chi_{1,2}(1)$, $H_{45}(2)$

 $\lambda \chi_1^a \chi_2^b H_{45}^{ab} + \frac{1}{2} M_2 \chi_2^a \chi_2^a$

Using the second term,

 χ_2 χ_1

Corrections

Corrections

 δv

V45

 $\langle H_{45} \rangle = -iv_{45} \times \begin{pmatrix} \sigma_2 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0_{4 \times 6} \\ 0 & 0 & \sigma_2 \\ 0_{6 \times 4} & 0_{4 \times 4} \end{pmatrix}$

 $SU(2)_R$ symmetry

The vev should be non-zero after $SU(2)_R$ symmetry breaking

Indeed, $H_{45}H_{45}H_{16}H_{16}^*$ gives

