

LOOKING FOR NEW PHYSICS IN THE MUD
Katelin Schutz, McGill University Lawrence-Hitoshi-fest, September 27[']2024

The importance of saying "hi"

Based on Allan, B. (2008). Knowledge creation within a community of practice

Hugo Schérer

LOOKING FOR NEW PHYSICS IN THE MUD
Katelin Schutz, McGill University Lawrence-Hitoshi-fest, September 27[']2024

NEWS FLASH: OUR UNIVERSE IS NOT A VACUUM!

What happens when I go around at conferences telling people I've been thinking about finite-temperature field theory

CHALLENGE OR OPPORTUNITY?

- ➤ Doing QFT in a dense medium is quite technical (apologies for the number of equations in this talk!), do we really have to deal with this?
- ➤ Yes, if we care about "long"-wavelength physics (probing system beyond individual constituents)
- ➤ Not only technical but qualitatively new way of viewing a system, new dispersion relations, new propagating modes (e.g. longitudinal photon)
- ➤ Perhaps this implies qualitatively new signatures of physics beyond the Standard Model?
- ➤ Low energies imply we could look for low-dimensional portals/operators (kinetic mixing, axions, etc.) by exploiting the medium

HOW DID I GET INTERESTED IN FTFT AS AN ASTRO-CURIOUS BSM PERSON?

WHAT'S AT STAKE HERE FOR BSM PHYSICS?

Iles, Heeba, KS 2407.21096

WHAT'S AT STAKE HERE FOR BSM PHYSICS?

Hook, Kahn, Safdi, Sun (2018), Safdi, Sun, Chen (2018)

HOW MIGHT THESE NEW SIGNATURES ARISE?

Dark photons in vacuum: $\mathcal{L} = -\frac{1}{2}$

$$
\mathcal{L} = -\frac{1}{4}F^2 - \frac{1}{4}F
$$

 $A_1 = A - \kappa A', \quad A_2 = A'$

 Z 1 2 m_A^2 , $A_2^2 + ej$

 $\mathscr{A} = A$, $\mathscr{S} = A' - \kappa A$

Rotate away kinetic mixing term ("mass basis")

 Z 1 2

$F'^2 +$ 1 2 *κ FF*′+ 1 2 m_A^2 , $A'^2 + ej_\mu A^\mu$, $\kappa \ll 1$

 $m_A^2 \cdot S_\mu (S^\mu + \mathscr{A}^\mu) + ej_\mu$ *μ*

$$
ej_{\mu}(A_1^{\mu} + \kappa A_2^{\mu})
$$

Rotate away kinetic mixing term ("active/sterile basis" analog of neutrinos) ⁼ *^A*,

HOW IS THIS AFFECTED BY AN AMBIENT MEDIUM?

j μ $= j_{\mu}^{*}$ ext $+ j_{\mu}^{*}$ ind $= \prod^{\mu\nu} (\omega, k) A_{\nu}^{*}$

 Z 1 2 $m_A^2 \mathcal{S}_{\mu}(\mathcal{S}^{\mu} + \mathcal{A}^{\mu}) + \mathcal{A}_{\mu} \Pi^{\mu\nu} \mathcal{A}_{\nu} + ej_{\mu}^{\text{ext}}$ *μ*

Polarization tensor of linear response theory

Active state is constantly getting bombarded ("dressed") by background particles before oscillating to sterile state

 \mathbf{w} $\left(\sum_{p+k}^{k} k\right)$ \mathbf{w} $= \int \frac{d^3p}{(2\pi)^3} \frac{1}{2E_p} \left\{ f(E_p) \left[\sum_{p+k}^{k} \sum_{p+k}^{k} \left(\sum_{p+k}^{k} \right) \right] \frac{k}{p+k} \right\}$

HOW DO WE COMPUTE POLARIZATION TENSORS?

If system is in thermal equilibrium, $\rho = e^{-H\beta} = e^{-iH\Delta t} = U(-i\beta,0)$

finite imaginary time interval, bosons have periodic boundary conditions, so Fourier transforming we get discrete spectrum of $\int \frac{d^4p}{(2\pi)^4} M(p_0) \to \frac{i}{\beta} \sum_{n=1}^{\infty} \int \frac{d^3p}{(2\pi)^3} M(p_0 = i\omega_n)$ imaginary "Matsubara frequencies"

$$
6\pi\alpha \int \frac{d^3p}{(2\pi)^3} \frac{1}{2E_p} \left[f(E_p) + \bar{f}(E_p) \right]
$$

\$\times \frac{(p \cdot k)(k^\mu p^\nu + k^\nu p^\mu) - (k^2)p^\mu p^\nu - (p \cdot k \cdot k^2)p^\mu p^\nu - (k^2)^2 \cdot k^2 - \frac{1}{4}(k^2)^2 \cdot k^2 - \frac{1}{4}(k^2

HOW DO WE COMPUTE POLARIZATION TENSORS?

If system is in thermal equilibrium, $\rho = e^{-H\beta} = e^{-iH\Delta t} = U(-i\beta,0)$

finite imaginary time interval, bosons have periodic boundary conditions, so Fourier imaginary "Matsubara frequencies"

$$
6\pi\alpha \int \frac{d^3p}{(2\pi)^3} \frac{1}{2E_p} \left[f(E_p) + \bar{f}(E_p) \right] \times \frac{(p \cdot k)(k^{\mu}p^{\nu} + k^{\nu}p^{\mu}) - (k^2)p^{\mu}p^{\nu} - (p \cdot k)^2}{(p \cdot k)^2 - \frac{1}{4}(k^2)^2}
$$

soft photon approximation used in Braaten & Segel (1993)

USAGE OF BRAATEN & SEGEL APPROXIMATION

$$
P_L^{\mu\nu} = \epsilon_L^{\mu} \epsilon_L^{\nu}, \quad P_T = \epsilon_T^{\mu} \epsilon_{T1}^{\nu} + \epsilon_{T2}^{\mu} \epsilon_{T2}^{\nu}
$$

$$
\Pi^{\mu\nu} = \Pi_L P_L^{\mu\nu} + \Pi_T P_T^{\mu\nu}
$$

$$
\omega_T^2 = k^2 + \Pi_T, \quad \omega_L = \frac{\omega_L^2}{k^2} \Pi_L
$$

$$
\Pi_L^{\text{On}} = \frac{3\omega_p^2}{v_*^2} \left(\frac{1 - n^2}{n^2}\right) \left[\frac{1}{2nv_*} \log\left(\frac{1 + nv_*}{1 - nv_*}\right) - 1\right]
$$

$$
\Pi_T^{\text{On}} = \frac{3\omega_p^2}{2v_*^2} \left[\frac{1}{n^2} - \left(\frac{1 - n^2 v_*^2}{n^2} \right) \frac{1}{2nv_*} \log \left(\frac{1 + nv_*}{1 - nv_*} \right) \right]
$$

Decompose polarization tensor by projection

Read off dispersion relations from poles in propagator

USAGE OF BRAATEN & SEGEL APPROXIMATION

Neutrino energy loss from the plasma process at all temperatures and densities

Eric Braaten (Northwestern U.), Daniel Segel (Northwestern U.) Jan, 1993

38 pages Published in: Phys.Rev.D 48 (1993) 1478-1491 e-Print: hep-ph/9302213 [hep-ph] DOI: 10.1103/PhysRevD.48.1478 Report number: NUHEP-TH-93-1 View in: OSTI Information Bridge Server, ADS Abstract Service

D pdf \mathbb{R} claim E.

Raffelt's book, "Stars as Laboratories for fundamental physics"

This version (08 July 2023) with some errata fixed See also new Appendix E

Reference search \bigodot 222 citations

6.3.4 Lowest-Order QED Calculation of the Polarization Tensor

This section was aiming at the dispersion relations of transverse and longitudinal plasmons, following Braaten and Segel (1993) [4] who provided beautiful analytic approximations. The expressions for the polarization tensor that obtain after dropping $(K^2)^2/4$ in Eq. (6.36) are accurate to lowest order in α only in the neighborhood of $\omega \sim k$ and thus are only useful to find the dispersion relations. They should not be used in the off-shell regime. After dropping this term, Braaten and Segel arrive at their Eqs. $(A16)$ and $(A17)$, corresponding to Eqs. (6.37)

Hugo Schérer

RESULT WITHOUT ASSUMING ON-SHELL

$$
\Pi_{L} = \omega_{p}^{2} \Bigg[-\frac{2K^{2}}{k^{2}v_{*}^{2}} + \frac{K^{2}}{4E_{*}^{2}v_{*}^{3}} \log \left(\frac{1+v_{*}}{1-v_{*}} \right) + \frac{\omega K^{2} (3 + (\omega^{2} - 3k^{2})/4E_{*}^{2})}{4k^{3}v_{*}^{3}} \log \left| \frac{(\omega + kv_{*})^{2} - (K^{2})^{2}/4E_{*}^{2}}{(\omega - kv_{*})^{2} - (K^{2})^{2}/4E_{*}^{2}} \right|
$$

\n
$$
-\frac{E_{*} K^{2} (1 + 3K^{2}/4E_{*}^{2})}{2k^{3}v_{*}^{3}} \log \left| \frac{\omega^{2} - (kv_{*} - K^{2}/2E_{*})^{2}}{\omega^{2} - (kv_{*} + K^{2}/2E_{*})^{2}} \right| - \frac{(1 - v_{*}^{2} + K^{2}/2E_{*}^{2})}{2v_{*}^{3}} \sqrt{\left| \frac{4m^{2}}{K^{2}} - 1 \right|} C \Bigg]
$$

\n
$$
\Pi_{T} = \omega_{p}^{2} \Bigg[\frac{k^{2} + 2\omega^{2}}{2k^{2}v_{*}^{2}} + \frac{K^{2}}{4E_{*}^{2}v_{*}^{3}} \log \left(\frac{1+v_{*}}{1-v_{*}} \right) - \frac{\omega (3(\omega^{2} - k^{2}v_{*}^{2}) + (\omega^{2} + 3k^{2})K^{2}/4E_{*}^{2})}{8k^{3}v_{*}^{3}} \log \left| \frac{(\omega + kv_{*})^{2} - (K^{2})^{2}/4E_{*}^{2}}{(\omega - kv_{*})^{2} - (K^{2})^{2}/4E_{*}^{2}} \right|
$$

\n
$$
+ \frac{E_{*} (3(\omega^{2} - v_{*}^{2}k^{2}) - 2K^{2} + 3(\omega^{2} + k^{2})K^{2}/4E_{*}^{2})}{4k^{3}v_{*}^{3}} \log \left| \frac{\omega^{2} - (kv_{*} - K^{2}/2E_{*})^{2}}{\omega^{2} - (kv_{*} + K^{2}/2E_{*})^{2}} \right| - \frac{(1 - v_{*}^{2} + K^{
$$

where

$$
C = \begin{cases} \tan^{-1}\left(\frac{((K^2)^2/4m^2 + k^2)v_* - \omega k}{\left(((K^2)^2/4m^2)\sqrt{4m^2/K^2 - 1}}\right) + \tan^{-1}\left(\frac{((K^2)^2/4m^2 + k^2)v_* + \omega k}{\left(((K^2)^2/4m^2)\sqrt{4m^2/K^2 - 1}}\right) & n < 1 \text{ and } \xi < 1\\ \frac{1}{2}\log\left|\frac{\left(v_*\left((K^2)^2/4m^2 + k^2\right) + \left((K^2)^2/4m^2\right)\sqrt{1 - 4m^2/K^2}\right)^2 - \omega^2 k^2}{\left(v_*\left((K^2)^2/4m^2 + k^2\right) - \left((K^2)^2/4m^2\right)\sqrt{1 - 4m^2/K^2}}\right)^2 - \omega^2 k^2}\right| & n > 1 \text{ or } \xi > 1 \end{cases}
$$

Schérer, KS 2405.18466

HOW WELL DOES THE APPROXIMATION DO?

 $\text{Re}[\Pi_L/\alpha m^2]$

Schérer, KS 2405.18466

 F_{60}

 -30

HOW WELL DOES THE APPROXIMATION DO?

${\rm Im}[\Pi_L/\alpha m^2]$ Numerical

Schérer, KS 2405.18466

IF YOU WANT A PEDAGOGICAL REFERENCE **TO LEARN MORE IN DETAIL**

Finite temperature field theory

for the masses

Hugo Schérer

Department of Physics McGill University, Montréal

April, 2024

CRUCIAL CAVEAT: ALL OF THIS ASSUMES AN ISOTROPIC PLASMA!

MOST ASTROPHYSICAL SYSTEMS HAVE MAGNETIC FIELDS— NOT ISOTROPIC!

Nirmalya Brahma

HOW DOES ANISOTROPY PLAY A ROLE?

$(K^2(g^{\mu\nu} - K^{\mu}k^{\nu}/K^2) + \Pi^{\mu\nu}$ EOM $(K^{2}(g^{\mu\nu} - K^{\mu}k^{\nu}/K^{2}) + \Pi^{\mu\nu})A_{\nu} = 0$

$(\epsilon_{\mu}^{T})^{*}(K^{2}(g^{\mu\nu} - K^{\mu}k^{\nu}/K^{2}) - \Pi^{\mu\nu})\epsilon_{\nu}^{T}A_{T} = (\omega^{2} - k^{2} - (\epsilon_{\mu}^{T})^{*}\Pi^{\mu\nu}\epsilon_{\nu}^{T})$ *ι*) $A_T = 0$ Π ^T if plasma is isotropic

in general, for modes I, J $\ \pi^{IJ} = (\epsilon^{I}_{\mu})^* \Pi^{\mu \nu} \epsilon^{J}_{\nu} \$ is the mode mixing matrix *in* isotropic plasmas, $\pi^{IJ} = \text{diag}(\Pi_I, \Pi_T, \Pi_T)$ so transverse and longitudinal modes

are the normal modes of the system!!

Project onto e.g. transverse subspace

PLASMA NORMAL MODES

$$
\begin{aligned}\n\cdot \hat{\Pi}^{BV} \cdot \epsilon^J \Big] \\
-i \text{Re}[\pi_{\times}] c_{\theta} \qquad \qquad -i \frac{\sqrt{K^2}}{\omega} \text{Re}[\pi_{\times}] s_{\theta} \\
\text{Re}[\pi_{\perp}] c_{\theta}^2 + \text{Re}[\pi_{\parallel}] s_{\theta}^2 \qquad \frac{\sqrt{K^2}}{\omega} \left(\text{Re}[\pi_{\perp}] - \text{Re}[\pi_{\parallel}] \right) c_{\theta} \\
\frac{\sqrt{K^2}}{\omega} \left(\text{Re}[\pi_{\perp}] - \text{Re}[\pi_{\parallel}] \right) c_{\theta} s_{\theta} \qquad \frac{K^2}{\omega^2} \left(\text{Re}[\pi_{\parallel}] c_{\theta}^2 + \text{Re}[\pi_{\perp}] s_{\theta} \right)\n\end{aligned}
$$

where
$$
\operatorname{Re}[\pi_i(\omega, B)] = \frac{e^3 B}{4\pi} \sum_{n=0}^{\infty} \pi_i^{(n)}(\omega, B), \quad i = \perp, \parallel, \times
$$

$$
\text{where}\quad \pi_\parallel^{(n)} = \int \frac{dq_{\parallel,b}}{2\pi} \frac{f_e\left(E_q^n\right) + f_{\bar{e}}\left(E_q^n\right)}{2E_q^n} \frac{\left(2-\delta_0^n\right) 4m_e^2 + \left(1-\delta_0^n\right) 16n\epsilon}{\left(E_q^n\right)^2 - \frac{\omega^2}{4}}
$$

 $E_q^n \equiv \sqrt{q_{\parallel,b}^2 + m_e^2 + 2neB}$ energy of nth Landau level

PLASMA NORMAL MODES- CLASSICAL

- ➤ "mass" of normal modes is not just simply the plasma frequency!
- ➤ In some parts of phase space, the eigenvalue of the mixing matrix is negative — no mixing with BSM particles is possible!
- ➤ As photons propagate in astrophysical media, temperatures and plasma frequencies scan a wide range of values, normal modes will rotate — lots of opportunities to hit resonances!

Brahma, **KS** 2409.monday

- 7.21 6.41 5.61 4.81 4.01 3.21 2.40 1.60 0.80 0.00
- 4.51 4.01 3.51 3.01 2.51 2.00 1.50 1.00 0.50 0.00 1.18 1.16 1.14 1.12
- 1.10 1.08
- 1.06
- 1.04
- 1.02
- 1.00

CONCLUSIONS

- ➤ There's a lot of variety in the universe! Many temperatures and densities to probe different energy scales
- ➤ We've developed some hammers… what are the nails? Mix and match different astro systems, models, observables, etc.
- ➤ When you create a group atmosphere where people feel welcomed and supported, you can do hard things (finite-temperature QFT!)
- ➤ Thanks for the memories and inspiration!

me at Comal last night

me at Comal 45 minutes after walking across stage in 2019