## Nu Physics in the LCDM Desert

Neal Weiner New York University LawrenceHitoshiFest Sept 26, 2024















### Grad student topics

- CP violation in EFTs
- Flavor symmetries
- Neutrino oscillations
- Neutrino masses (including anarchy!)
  Follow the data; don't underestimate

#### • Extra dimensions

- Supersymmetry
- Dark matter

Follow the data; don't underestimate what a fresh perspective can bring



## Signals of the desert





#### Melissa Joseph, **BU GS -> Utah PD**

#### Daniel Aloni, Harvard/BU PD





#### Eashwar Sivarajan, **BU GS**

Asher Berlin, **Fermilab JF** 





#### **Tony Zhou** NYU GS



#### **Cara Giovanetti** NYU GS





Martin Schmaltz, **BU SF** 





### The LCDM desert





#### What's in the desert: data



### What's in the desert: more data









![](_page_15_Picture_2.jpeg)

### This is the era of the desert

 These decades (WMAP/SDSS/Planck/BOSS -> Today -> Rubin/EUCLID/ Roman/SO/CMB-S4) will explore these energies/temperatures by seeing objects directly sensitive to those eras

"Cosmology, Schmosmology"

### What's in the desert: anomalies

![](_page_17_Figure_1.jpeg)

![](_page_17_Picture_2.jpeg)

![](_page_17_Picture_3.jpeg)

### The desert is exciting

- Irrespective of anything else, there's a tremendous opportunity to constrain or discover new physics below the MeV scale
- Anomalies, make concrete targets especially interesting
- Provides motivation for models to consider as we approach new data

#### Hubble and dark radiation

## The Hubble tension

- The Hubble tension is the disagreement between late-universe LCDM using the CMB and other cosmological data
- CMB+: H0 $\approx$ 67
- SHOES:  $H0 \approx 73$

measurements of the expansion rate versus values inferred assuming

## A horizon problem?

![](_page_21_Figure_2.jpeg)

#### "Sounds Discordant" Aylor et al 2019

![](_page_21_Picture_4.jpeg)

## A horizon problem?

 Changing the horizon, by adding extra energy density (e.g., dark radiation) can shift  $H_{z=1100}$  and thus the inferred value of  $H_0$ 

$$\theta \sim \frac{H_0}{H_{z=1100}}$$

#### Riess et al 2016

![](_page_22_Figure_5.jpeg)

• But it doesn't really work (anymore)

## Quick aside on BBN

- Historically, when people add dark radiation they also assume it was there during BBN, and take the resulting increase in primordial Helium for CMB calculations
- Even without the BBN data, this hurts the CMB fit, because Helium leads to additional damping at high-l
- If a light sector came into equilibrium post BBN, this would not apply

#### What about S8?

#### A late universe measurement of S8?

![](_page_25_Figure_1.jpeg)

HSC-Y3 galaxy lensing (Fourier) + BAO

![](_page_25_Picture_4.jpeg)

![](_page_26_Figure_1.jpeg)

#### We should not be fitting one number!

### Apples to apples

Gerbino et al 2022

![](_page_27_Figure_1.jpeg)

### DES8

![](_page_27_Figure_3.jpeg)

### **DM - DR Interactions and S8**

- Gentle DM-DR interactions (WZDR+) can suppress power in scale
- Generally suppresses power too much at the largest scales

![](_page_28_Figure_3.jpeg)

dependent fashion - may be relevant for S8 (Buen-Abad, Marques-Tavares, Schmaltz, 2015)

## A cosmological history

- into equilibration with the SM

Can we have a scenario where at late times (post MeV) the system comes

Rich dynamics in this dark sector relevant for cosmological observables

## A cosmological history

![](_page_30_Figure_1.jpeg)

Can have rich dynamics of interactions and mass thresholds at late times

 ${\cal V}$ 

T = MeV

### Phenomena to consider

- Late equibration -> Generate radiation for H0
- Mass thresholds
  - Heat up the fluid -> Affects CMB
  - Turn off interactions -> Affects S8
- Dark matter scattering -> Affects S8

#### Thermalizing via the neutrino portal

**Neutrinos can mix with** dark fermions (aka sterile neutrinos)

**Neutrinos are produced** in the SM, then oscillate into a superposition of **Dark and SM states** 

![](_page_32_Figure_3.jpeg)

![](_page_32_Figure_5.jpeg)

In general, scattering is higher at high T, mixing is lower at high T mixing wins production *increases* as temperature drops until some scale

#### cf Dodelson & Widrow

If scattering is present, after t~MFP/c, the states decohere and the state either is sterile or SM

### Beyond minimal sterile neutrinos

#### $\mathscr{L} \supset m_{dark} \nu_d \nu_d + m_{mix} \nu_d \nu_{SM} + \lambda \phi \nu_d \nu_d$

![](_page_33_Picture_2.jpeg)

### Finite (dark) temp effects

# $\Gamma_{\nu_{SM} \to \nu_d} = \frac{1}{4} \sin^2 2\theta_m \Gamma_{scatter}$

New dark effects Can suppress mixing (Dasgupta + Kopp) New dark effects Can enhance scattering (Bringmann et al)

![](_page_35_Figure_0.jpeg)

#### time->

$$\langle \Gamma \rangle = \frac{\frac{1}{4} \sin^2 2\theta_0 (3c_{\Gamma} T_{\nu}^5 G_F^2 + \alpha_d^2 \frac{T_d^2}{T_{\nu}})}{\left(\cos 2\theta_0 + \alpha_d \frac{T_d^2}{m_{\nu d}^2} + 18c_V \frac{G_F^2 T_{\nu}^6}{m_{\nu d}^2}\right)^2 + \sin^2 2\theta_0}$$

$$1 \simeq \frac{\langle \Gamma \rangle}{H} \simeq \frac{\theta_0^2 \alpha_d^2 T_{\nu}}{(1 + \alpha_d \frac{T_{\nu}^2}{m_{\nu d}^2})^2} \frac{M_{Pl}}{T_{\nu}^2} \simeq \theta_0^2 \frac{M_{Pl}}{m_{\nu d}} \frac{m_{\nu d}^5}{T_{\nu}^5}$$

![](_page_36_Picture_2.jpeg)

#### If there are dark states below an MeV they will naturally thermalize "near" their mass

$$m_{\nu d} \, (\theta_0^2 M_{Pl}/m_{\nu d})^{1/5}$$

![](_page_37_Figure_0.jpeg)

#### A light dark state with self interactions, will naturally thermalize at late time - even with very small mixing

![](_page_37_Picture_2.jpeg)

![](_page_37_Picture_3.jpeg)

## Steps in the dark sector

- When a particle becomes nonrelativistic, it deposits its entropy in the remaining light particles
- This heats up the light particles, raising their temperature
- It also redshifts slightly more slowly that radiation during the transition
- This means  $N_{eff}$  (the amount of dark radiation) is naturally time-dependent with a mass threshold

![](_page_38_Figure_5.jpeg)

## An ~eV step

• What if dark radiation has a "step" (changes Neff) during the CMB era?

![](_page_39_Figure_2.jpeg)

- Relaxing the BBN->Helium assumption improves fit for Neff,
  - interactions improve fit more,
    - step improves fit more
  - Does not "solve" the Hubble tension (see later)

| Model          | $\Delta \chi^2$ | $N_{\rm eff,IR}$      | $H_0 \ ({\rm km/s/Mpc})$ |
|----------------|-----------------|-----------------------|--------------------------|
| 1CDM           | 0.0             | 3.04                  | $68.2 \ [67.5, 68.9]$    |
| $DM + N_{eff}$ | -5.7            | $3.37 \ [3.20, 3.63]$ | $70.0 \ [68.9, 71.6]$    |
| SIDR           | -10.6           | $3.51 \ [3.31, 3.77]$ | $71.0 \ [69.6, 72.6]$    |
| WZDR           | -15.1           | $3.63 \ [3.37, 3.92]$ | $71.4 \ [69.7, 73.0]$    |

#### What about S8?

![](_page_41_Figure_1.jpeg)

#### We should not be fitting one number!

### Apples to apples

Gerbino et al 2022

### **DM - DR Interactions and S8**

- Gentle DM-DR interactions (WZDR+) can suppress power maybe relevant for S8 (Buen-Abad, Marques-Tavares, Schmaltz, 2015)
- Generally suppresses power too much at the largest scales

![](_page_42_Figure_3.jpeg)

#### A step in DM-DR interactions Aloni et al 2022

**DR** interactions

![](_page_43_Figure_2.jpeg)

The same mass threshold in the dark sector can also help "turn off" DM-

![](_page_43_Figure_4.jpeg)

#### Scale dependent structure suppression

![](_page_44_Figure_1.jpeg)

## Study this

- lensing (**D**)
- Additional datasets: DES power spectrum (DES)
- ACT DR4 + SPT 3G (**ACT+SPT**)

#### • Baseline dataset: Planck CMB, Pantheon, BOSS BAO, ACT DR 6 CMB

## **DM-DR scattering + lensing**

![](_page_46_Figure_1.jpeg)

In a model with DM-DR scattering, there is a preference for a lower value of S8 even with ACT lensing

Zhou, NW 2409.06771

![](_page_46_Picture_4.jpeg)

#### "Best fit" naturally gives power suppression w/o DES

![](_page_47_Figure_1.jpeg)

DES

#### So what happens if we include more data

- Dataset:
  - Planck
  - BOSS BAO
  - Pantheon 0.842

• ACT DR6 Lensing  $5^{\infty}_{2}$  0.8

#### • DES 0.758

![](_page_49_Figure_6.jpeg)

- Dataset:
  - Planck
  - BOSS BAO
  - Pantheon 0.842
  - ACT DR6 Lensing ୪୦୦୦୦ ୦.8
- ACT DR4 + SPT 3G 0.758

![](_page_50_Figure_6.jpeg)

![](_page_51_Figure_0.jpeg)

#### Different data pull in different directions

#### Is Late Equibration of Dark Radiation the answer to the Hubble and S8 tensions?!!??!?

- It doesn't matter!
- Well, it does matter, but it's not really the point
- in the eV-MeV era
- And this will be constrained by future data

• The point is there's a tremendous amount of freedom of what can happen

And being excited about that is what I learned from Lawrence and Hitoshi

#### Thank you (Lawrence and Hitoshi!) very much!

![](_page_53_Picture_1.jpeg)