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Grad student topics

• CP violation in EFTs


• Flavor symmetries


• Neutrino oscillations


• Neutrino masses (including anarchy!)


•Follow the data; don’t underestimate what a fresh perspective can bring

• Extra dimensions


• Supersymmetry


• Dark matter
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The desert correspondence
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The LCDM desert
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What’s in the desert: data
Planck Collaboration: The cosmological legacy of Planck

Fig. 19. The (linear theory) matter power spectrum (at z = 0) inferred from di↵erent cosmological probes. The broad agreement
of the model (black line) with such a disparate compilation of data, spanning 14 Gyr in time and three decades in scale is an
impressive testament to the explanatory power of ⇤CDM. Earlier versions of similar plots can be found in, for example, White et al.
(1994), Scott et al. (1995), Tegmark & Zaldarriaga (2002), and Tegmark et al. (2004). A comparison with those papers shows that
the evolution of the field in the last two decades has been dramatic, with ⇤CDM continuing to provide a good fit on these scales.

Palanque-Delabrouille et al. (2015); the latter was obtained by
di↵erentiating the corresponding 1D power spectrum using the
method of Chartrand (2011). The measurements of Ly↵ are at
higher redshift (2 < z < 3) than galaxy clustering and probe
smaller scales, but are more model-dependent.

Intermediate in redshift between the galaxy clustering and
Ly↵ forest data are cosmic shear measurements and redshift-
space distortions (Hamilton 1998; Weinberg et al. 2013). Here
we plot the results from the The Dark Energy Survey Y1 mea-
surements (Troxel et al. 2017) which are currently the most con-
straining cosmic shear measurements. They show good agree-
ment with the matter power spectrum inferred from ⇤CDM
constrained to Planck. These points depend upon the nonlin-
ear matter power spectrum, and we have used the method of
Tegmark & Zaldarriaga (2002) based on the fitting function of
Peacock & Dodds (1996) to deconvolve the nonlinear e↵ects,
which yields constraints sensitive to larger scales than would
it would otherwise appear. The nuisance parameters have been
fixed for the purposes of this plot. (More detail of the calcula-
tions involved in producing Fig. 19 can be found in Chabanier et
al. in prep.). Bearing in mind all of these caveats the good agree-

ment across more than three decades in wavenumber in Fig. 19
is quite remarkable.

Figure 20 shows the rate23 of growth, f�8, determined from
redshift-space distortions over the range 0 < z < 1.6, compared
to the predictions of ⇤CDM fit to Planck. Though the current
constraints from redshift surveys have limited statistical power,
the agreement is quite good over the entire redshift range. In par-
ticular, there is little evidence that the amplitude of fluctuations
in the late Universe determined from these measurements is sys-
tematically lower than predicted.

We shall discuss in Sect. 6 cross-correlations of CMB lens-
ing with other tracers and the distance scale inferred from baryon
acoustic oscillations (BAO). In general there is very good agree-
ment between the predictions of the ⇤CDM model and the mea-
surements. If there is new physics beyond base ⇤CDM, then
its signatures are very weak on large scales and at early times,
where the calculations are best understood.

23Conventionally one defines f as the logarithmic growth rate of the
density perturbation �, i.e., f = d ln �/d ln a. Multiplying this by the
normalization, �8, converts it to a growth rate per ln a.
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Fig. 24.— Recent measurements of the CMB temperature anisotropy and polarization. The two models, the thin nearly overlapping
grey lines, are from Planck (dashed line) and from ACT plus WMAP (A20, solid line). The primordial BB signal with r = 0.1 is also
shown with the dot-dashed line. For Planck we show the 2018 results (Planck Collab. V et al. 2019). For SPT we show Henning et al.
(2018) for 150 GHz TT ` < 2000, TE and EE, and Sayre et al. (2019) for BB. For ` > 2000 we show the SPT spectrum from George
et al. (2015) which has been corrected for point source emission. It is visually indistinguishable from the more precise but uncorrected
spectrum in Reichardt et al. (2020). For Polarbear/Simons Array we show EE from Adachi et al. (2020) and BB from pipeline A in
POLARBEAR Collaboration et al. (2017). For BICEP2/Keck we use Ade et al. (2018). All error bars are one sigma and points with no
lower bound in TT and EE have been dropped at high `. There is much more to each data set than is plotted here, for example additional
frequencies. For ACT we also show preliminary EE results that were not used in the analysis: for ` = [103, 150.5, 200.5, 250.5, 300.5],
DEE
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What’s in the desert: more data
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Fig. 10.— The deep (top) and wide (bottom) spectra used in the likelihood. The gray line is the best fit ⇤CDM plus foreground model
for ACT only. The 98⇥150 GHz spectra are omitted for clarity. The full coadd of these spectra plus the frequency cross spectra is given
in Table 17.

Figure 5. Projected SO constraints on CMB power spectra superimposed on those of other
selected experiments, including the planned satellite mission LiteBIRD. Credit: SO collaboration.

spectra. Specifically, SO will allow constraining the tensor-to-scalar ratio with a precision
�(r) ∼ 0.002 (SO-nominal) and ∼ 0.001 (SO-enhanced), thus approaching the threshold
values of this parameters as motivated by the current inflationary models and current
limits on the spectral index of the initial power spectrum of the density fluctuations.
Figure 6 shows the constraints SO will set on some of the popular inflationary models.

The LAT survey of SO will also enable very rich cross-correlation science overlap-
ping with surveys performed by DESI, Rubin Observatory, and Euclid. A combination of
the SO-nominal data, Sunyaev-Zel’dovich cluster surveys, with the DESI Baryon Acous-
tic Oscillations and the Rubin Observatory Weak lensing will allow to constrain the
total neutrino mass down to �(⌃m⌫) ∼ 30meV which could be further improved if a
cosmic-variance limited constraint on total optical depth, ⌧ , from a space mission, such
as LiteBIRD [9], is available, down to 20meV, both of which could permit determining
the neutrino mass hierarchy if their total mass happens to be su�ciently low, Fig. 6.

5.3 Timeline

The overall timeline of SO is shown in Fig. 7. As shown it does not include delays due
to the on-going pandemic, which is expected to shift the schedule by approximately 1
year. The deployment of the first SAT should happen in 2021, followed by remaining

– 11 –



16Figure: Nadler, Schutz et al. (2203.07354)

Bechtol et al, Snowmass White Paper 2023



This is the era of the desert

• These decades (WMAP/SDSS/Planck/BOSS -> Today -> Rubin/EUCLID/
Roman/SO/CMB-S4) will explore these energies/temperatures by seeing 
objects directly sensitive to those eras

“Cosmology, Schmosmology”



What’s in the desert: anomalies
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Moresco et al. (2022), open wCDM with systematics: 67.8-7.2
+8.7

Moresco et al. (2022), flat ΛCDM with systematics: 66.5 ± 5.4

Hotokezaka et al. (2019): 70.3-5.0
+5.3

Mukherjee et al. (2019), GW170817+VLBI: 68.3-4.5
+4.6

Mukherjee et al. (2020), GW170817+ZTF: 67.6-4.2
+4.3

Gayathri et al. (2020), GW190521+GW170817: 73.4-10.7
+6.9

Palmese et al. (2021), GW170817: 72.77-7.55
+11

Abbott et al. (2021), GWTC–3: 68-8.0
+12.0

Mukherjee et al. (2022), GW170817+GWTC–3: 67-3.8
+6.3

Wong et al. (2019), H0LiCOW 2019: 73.3-1.8
+1.7

Shajib et al. (2019), STRIDES: 74.2-3.0
+2.7

Liao et al. (2019): 72.2 ± 2.1
Liao et al. (2020): 72.8-1.7

+1.6
Qi et al. (2020): 73.6-1.6

+1.8
Millon et al. (2020), TDCOSMO: 74.2 ± 1.6

Yang, Birrer, Hu (2020): 73.65-2.26
+1.95

Birrer et al. (2020), TDCOSMO+SLACS: 67.4-3.2
+4.1

Birrer et al. (2020), TDCOSMO: 74.5-6.1
+5.6

Denzel et al. (2021): 71.8-3.3
+3.9

Wang, Meng (2017): 76.12-3.44
+3.47

Fernandez Arenas et al. (2018): 71.0 ± 3.5

Schombert, McGaugh, Lelli (2020): 75.1 ± 2.8
Kourkchi et al. (2020): 76.0 ± 2.6

Pesce et al. (2020): 73.9 ± 3.0

de Jaeger et al. (2020): 75.8-4.9
+5.2

de Jaeger et al. (2022): 75.4-3.7
+3.8

Cantiello et al. (2018): 71.9 ± 7.1
Khetan et al. (2020) w/ LMC DEB: 71.1 ± 4.1

Blakeslee et al. (2021) IR-SBF w/ HST: 73.3 ± 2.5

Huang et al. (2019): 73.3 ± 4.0

Yuan et al. (2019): 72.4 ± 2.0
Reid, Pesce, Riess (2019), SH0ES: 71.1 ± 1.99

Freedman et al. (2020): 69.6 ± 1.9
Soltis, Casertano, Riess (2020): 72.1 ± 2.0
Kim, Kang, Lee, Jang (2021): 69.5 ± 4.2

Freedman (2021): 69.8 ± 1.7
Anand, Tully, Rizzi, Riess, Yuan (2021): 71.5 ± 1.8

Jones et al. (2022): 72.4 ± 3.3
Dhawan et al. (2022): 76.94 ± 6.4

Camarena, Marra (2019): 75.4 ± 1.7
Riess et al. (2019), R19: 74.03 ± 1.42

Breuval et al. (2020): 72.8 ± 2.7
Riess et al. (2020), R20: 73.2 ± 1.3

Camarena, Marra (2021): 74.30 ± 1.45
Riess et al. (2022), R22: 73.04 ± 1.04

Farren et al. (2021): 69.5-3.5
+3.0

Philcox et al. (2020), Pl (k)+CMB lensing: 70.6-5.0
+3.7

Baxter et al. (2020): 73.5 ± 5.3

Alam et al. (2020), BOSS+eBOSS+BBN: 67.35 ± 0.97
Ivanov et al. (2020), BOSS+BBN: 67.9 ± 1.1

Colas et al. (2020), BOSS DR12+BBN: 68.7 ± 1.5
D' Amico et al. (2020), BOSS DR12+BBN: 68.5 ± 2.2

Philcox et al. (2021), P+Bispectrum+BAO+BBN: 68.31-0.86
+0.83

Chen et al. (2021), P+BAO+BBN: 69.23±0.77
Zhang et al. (2021), BOSS correlation function+BAO+BBN: 68.19±0.99

Hinshaw et al. (2013), WMAP9: 70.0 ± 2.2
Henning et al. (2018), SPT: 71.3 ± 2.1

Zhang, Huang (2019), WMAP9+BAO: 68.36-0.52
+0.53

Aiola et al. (2020), WMAP9+ACT: 67.6 ± 1.1
Aiola et al. (2020), ACT: 67.9 ± 1.5
Dutcher et al. (2021), SPT: 68.8 ± 1.5

Ade et al. (2016), Planck 2015, H0 = 67.27 ± 0.66
Aghanim et al. (2020), Planck 2018+CMB lensing: 67.36 ± 0.54

Aghanim et al. (2020), Planck 2018: 67.27 ± 0.60
Pogosian et al. (2020), eBOSS+Planck mH2: 69.6 ± 1.8

Balkenhol et al. (2021), Planck 2018+SPT+ACT : 67.49 ± 0.5
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FIG. 2. 68% CL constraint on H0 from di↵erent cosmological probes (based on Refs. [49, 50]).
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FIG. 4. Constraints on S8 and its corresponding 68% error (updated from Ref. [50]). We show the nominal reported values
by each study, which may di↵er in their definition of the constraints. The definition S8 = �8(⌦m/0.3)↵ with ↵ = 1/2 has been
uniformly used for all points. In those cases where ↵ 6= 1/2 has been used in some references, the value of S8 with ↵ = 1/2
was recalculated (along with the uncertainties) using the constraints on �8 and ⌦m shown in those references, assuming their
errors are Gaussian. This concerns only 5 CC points where the published value of ↵ was di↵erent from 1/2 and the di↵erence
from the published S8 (with di↵erent ↵) is very small. The rest of the points are taken directly from the published values.

By contrast, in some analyses, the statistics relevant to the full posterior distribution have been adopted, such as
the maximum a posteriori point or the best fitting values and their associated errors. These choices can impact the
estimated values of the parameters, in particular when the posterior distributions are significantly non-Gaussian or
when the parameter estimates are prior dominated (see e.g. Ref. [266]). For simplicity, we will use the nominal values
reported in each analysis, but caution the reader that the methodology used may di↵er from case to case (see Sec. III
for a more detailed discussion).

Early universe measurements yield H0 ~67 

Late universe measurements yield H0 ~73 

~5 sigma

Early universe measurements yield S8 ~0.83 

Late universe measurements yield H0 ~0.77 

~3 sigma



The desert is exciting

• Irrespective of anything else, there’s a tremendous opportunity to 
constrain or discover new physics below the MeV scale


• Anomalies, make concrete targets especially interesting


• Provides motivation for models to consider as we approach new data



Hubble and dark radiation



The Hubble tension

• The Hubble tension is the disagreement between late-universe 
measurements of the expansion rate versus values inferred assuming 
LCDM using the CMB and other cosmological data


• CMB+:  H0 67


• SH0ES:  H0 73

≈

≈



Measures angular size of  
sound horizon at recombination

drecomb ∼ H−1
0

rs ∼ H−1
z=1100

θ

θ ∼
rs

drecomb
∼

H0

Hz=1100

A horizon problem?
“Sounds Discordant” Aylor et al 2019



A horizon problem?
• Changing the horizon, by adding 

extra energy density (e.g., dark 
radiation) can shift  and 
thus the inferred value of 

Hz=1100
H0

θ ∼
H0

Hz=1100

Riess et al 2016

• But it doesn’t really work (anymore)



Quick aside on BBN

• Historically, when people add dark radiation they also assume it was there 
during BBN, and take the resulting increase in primordial Helium for CMB 
calculations


• Even without the BBN data, this hurts the CMB fit, because Helium leads 
to additional damping at high-l


• If a light sector came into equilibrium post BBN, this would not apply



What about S8?



A late universe measurement of S8?
ACT DR6 Lensing Map and Cosmology 11

Figure 6. (a) Left: The ACT lensing measurement of the amplitude of matter fluctuations �8. For each data set, we show
68% and 95% confidence limits. Lensing measurements also depend on H0 and ⌦m; we break this degeneracy by including BAO
data. The ACT lensing measurement agrees well with the Planck lensing measurement as well as the inference of �8 from Planck
CMB anisotropies assuming ⇤CDM, a mainly early-universe measurement. (b) Right: Comparison of �8 measurements between
ACT CMB lensing and a consistent re-analysis of galaxy weak lensing (cosmic shear) data sets. The latter also are degenerate
with other parameters (more severely; see Appendix D); we show an example for the DES survey with and without BAO data.

Table 2. Marginalized constraints on cosmological parameters in a consistent analysis of various weak lensing data-sets shown
alongside CMB anisotropy (two-point) constraints. Throughout this work, we report the mean of the marginalized posterior
and the 68% confidence limit, unless otherwise mentioned.

Data �8 S8 ⌦m H0

(km s�1 Mpc�1)

Planck CMB aniso. (PR4 TT+TE+EE) + SRoll2 low-` EE 0.811± 0.006 0.830± 0.014 0.314± 0.007 67.3± 0.5

Planck CMB aniso. (+Alens marg.) 0.806± 0.007 0.817± 0.016 0.308± 0.008 67.8± 0.6

ACT CMB Lensing + BAO 0.820± 0.015 0.840± 0.028 0.315± 0.016 68.2± 1.1

ACT+Planck Lensing + BAO 0.815± 0.013 0.830± 0.023 0.312± 0.014 68.1± 1.0

ACT+Planck Lensing (extended) + BAO 0.820± 0.013 0.841± 0.022 0.316± 0.013 68.3± 1.0

KiDS-1000 galaxy lensing + BAO 0.732± 0.049 0.757± 0.025 0.323± 0.034 68.9± 2.0

DES-Y3 galaxy lensing + BAO 0.751± 0.035 0.773± 0.025 0.319± 0.025 68.7± 1.5

HSC-Y3 galaxy lensing (Fourier) + BAO 0.719± 0.054 0.766± 0.029 0.344± 0.038 70.2± 2.3

HSC-Y3 galaxy lensing (Real) + BAO 0.752± 0.045 0.760± 0.030 0.308± 0.024 68.0± 1.5

2020d). The NPIPE lensing analysis (Carron et al.
2022) reconstructs lensing with CMB angular scales
from 100  `  2048 using the quadratic estimator.
Apart from incorporating around 8% more data com-
pared to the 2018 Planck PR3 release, pipeline improve-
ments were incorporated, including improved filtering
of the reconstructed lensing field and of the input CMB
fields (by taking into account the cross-correlation be-
tween temperature and E-polarization, as well as ac-
counting for noise inhomogeneities; Maniyar et al. 2021).
These raise the overall signal-to-noise ratio by around
20% compared to Planck PR3 (Planck Collaboration
et al. 2020a). Figure 5 shows a comparison of noise
power between the Planck PR3 lensing map and the

Planck NPIPE lensing map.4 The NPIPE mass map cov-
ers 65% of the total sky area in comparison to the ACT
map which covers 23%, but the ACT map described in
Section 2 has a noise power that is at least two times
lower, as seen in the same Figure.
Since the NPIPE and ACT DR6 measurements only

overlap over part of the sky, probe di↵erent angular
scales, and have di↵erent noise and instrument-related
systematics, they provide nearly independent lensing
measurements. Thus, apart from comparing the two
measurements, the consistency in terms of lensing am-

4 The NPIPE noise curve was provided by Julien Carron; private
communication.

12 Madhavacheril, Qu, Sherwin, MacCrann, Li et al.

Figure 7. Marginalized posteriors for various combinations
of parameters measuring the amplitude of matter fluctua-
tions. The top panel shows S8 ⌘ �8(⌦m/0.3)0.5 which is best
constrained by galaxy lensing, and the bottom panel shows
�8. All lensing measurements shown here include BAO data.
The Planck CMB anisotropy measurements are shown both
without and with marginalization over late-time information;
while the former is mostly an early-universe extrapolation,
the latter is more fully so.

plitude and the S
CMBL
8 ⌘ �8(⌦m/0.3)0.25 lensing-only

constraint as presented in Qu et al. (2023) suggests
that we may safely combine the two measurements at
the likelihood level to provide tighter constraints. For
the NPIPE lensing measurements, we use the published
NPIPE lensing bandpowers, but use a modified covari-
ance matrix to account for uncertainty in the normal-
ization in the same way as we do for ACT.5 We com-
pute the joint covariance between ACT and NPIPE band-
powers using the same set of 480 full-sky FFP10 CMB
simulations used by NPIPE to obtain the Planck part of
the covariance matrix; see Qu et al. (2023) for details.
The resulting joint covariance indicates that the cor-

5 https://github.com/carronj/planck PR4 lensing

Figure 8. Marginalized posteriors for �8 using variations
of our ACT lensing analysis in combination with BAO data
(black). The SZ inpainting method was our pre-unblinding
result (see Qu et al. 2023). We also show variations that use
only polarization data and with an alternative CIB depro-
jection method for mitigating foregrounds. The constraint
that uses linear theory (gray) is not expected to agree per-
fectly, but the shift is small, showing that the details of the
non-linear prescription do not matter significantly.

relation coe�cient between the amplitudes of the ACT
and Planck lensing measurements is approximately 18%.
This is expected given the fact that although the ACT
and NPIPE data sets have substantially independent in-
formation, the sky overlap between both surveys means
that there is still some degree of correlation between
nearby lensing modes.
The combination of ACT lensing, Planck lensing, and

BAO provides the following 1.6% marginalized con-
straint:

�8 = 0.812± 0.013, (5)

which is also consistent with the Planck CMB
anisotropy value �8 = 0.811 ± 0.006 and the WMAP
+ ACT DR4 CMB anisotropy value �8 = 0.819± 0.011.

3.4. Comparison with galaxy surveys

In order to place our constraints in the context of ex-
isting measurements, we use the most recently published
galaxy weak lensing measurements from the Dark En-
ergy Survey6 (henceforth DES Y3), Kilo Degree Sur-
vey7 (henceforth KiDS-1000), and the Hyper Suprime-
Cam Subaru Strategic Program8 (henceforth HSC-Y3).
For each survey, we use the weak lensing shear two-
point functions only; we do not include galaxy cluster-
ing or cross-correlations between galaxy overdensity and
shear. While the three surveys provide similar statisti-
cal power, each has relative strengths and weaknesses:
DES covers the greatest area (approximately 5000 deg2)
with the lowest number density (5.6 galaxies per square
arcminute), while HSC-Y3 covers a relatively small area

6 https://www.darkenergysurvey.org/
7 https://kids.strw.leidenuniv.nl/
8 https://hsc.mtk.nao.ac.jp/ssp/survey/

Madhavacheril, Qu, Sherwin, MacCrann, Li et al.  (ACT collaboration) 2023



Apples to apples

redshift dependence of b is the major challenge for galaxy clustering surveys.
Perturbative treatment of biasing leads to an expansion in terms of local
operators formed out of the density and tidal field up to a given order
in perturbation theory [114], which gives rise to a number of physically
motivated parameters that can be marginalised over when fitting for the
shape of the galaxy power spectrum [e.g. 115]. Note, however, that since the
high momenta of neutrinos permit them to travel over cosmological distances,
the bias expansion will depend on the history of the matter and neutrino
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Figure 3: Contributions of the matter power spectrum P (k, z) to various large scale
structure observables. The contributions are weighted by signal-to-noise ratio anticipated
for each observable: the CMB lensing power spectrum using the lensing reconstruction
expected from CMB-S4, the angular power of galaxy density using observations from the
Vera Rubin Observatory gold sample, and number counts of clusters with mass greater
than 10

14 h�1M�. The CMB lensing weighting is multiplied by an additional factor of 3
relative to the others in order to make the CMB lensing contributions more visible despite
the very broad lensing redshift kernel. The values of wavenumber k and redshift z that
contribute to a given angular scale ` in the Limber approximation are shown by the black
dotted lines. The purple dashed line shows the free-streaming scale kfs(z) from Equation (7)
for standard neutrinos with

P
m⌫ = 58 meV; massive neutrinos suppress the amplitude

of P (k, z) to the right of that line. Nonlinear corrections to the matter power spectrum
are expected to be non-negligible to the right of the red dash-dot line. Figure reproduced
from [107].
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shear power spectra to the matter power spectrum. Moreover, it
presents subtleties in relating physical scales between the linear and
non-linear power spectra, as discussed in Tegmark & Zaldarriaga
(2002), and we will employ a simplified approach presented in the
next paragraph. Nevertheless, assuming the Planck 2018 cosmol-
ogy (Planck Collaboration et al. 2020), we may compare the power
spectrum reconstructed from DES Y3 data to the expectation from
Planck, which is relevant in the context of the 𝐿8 tension found in
previous weak lensing surveys (Amon et al. 2022; Secco et al. 2022;
Hikage et al. 2019; Hamana et al. 2020; Asgari et al. 2021), and that
we also observe in fig. 10.

To do so, we recast eq. (22) as an integral over three-
dimensional Fourier 𝑀-modes, using the change of variable
𝑀 = (𝑁 + 1/2)/𝑂(𝑃). We then define a window matrix, W, such
that the expected value of our data vector,

〈
Ĉ𝐿

〉
, may be expressed

as a function of the linear matter power spectrum at 𝑃 = 0, 𝑄(𝑀),
computed in log-spaced 𝑀-bins of width ωln 𝑀 , P, such that〈
Ĉ𝐿

〉
≈ WP. (31)

This window matrix is given, for the element corresponding to 𝑀

and 𝑅
𝑁𝑂
𝐿 , and ignoring intrinsic alignments, by

W𝑀 ,𝐿,𝑁,𝑂 ≈ 𝑀ωln 𝑀 (𝑆 + 1/2)𝑇𝑁 (𝑂)𝑇𝑂 (𝑂)
𝑄NL (𝑀 , 𝑃(𝑂))

𝑄fid (𝑀)
(32)

with 𝑂 = (𝑆 + 1/2)/𝑀 . Given the data covariance C, the recon-
structed power spectrum has estimated value and covariance given
by

P̂ = SWᵀC−1Ĉ𝐿 , (33)

S =
[
WᵀC−1W + 𝐿

−2I
]−1

, (34)

where we have included a regularization term, 𝐿, which enables
inverting eq. (31) at the price of accepting that certain 𝑀-modes
may not be recovered from the data (the results have very low de-
pendence on 𝐿, if chosen large enough, in the range where the data
is constraining). To ensure numerical stability, we use 20 bins in the
range 𝑀 ∼ 1 × 10−3 h Mpc−1

𝑈𝑉1 × 102 h Mpc−1, and subsequently
rebin the estimated power spectrum within 10 bins for better visu-
alization as well as to suppress the anticorrelation of adjacent bins.
The simplification here comes from eq. (32), where the dependence
on the linear matter power spectrum is made explicit by simply
multiplying the numerator and denominator by 𝑄fid (𝑀), the power
spectrum at redshift zero for the fiducial Planck 2018 cosmology.
Our exercise therefore amounts to a reconstruction of the integrand
over ln 𝑀 with respect to what is expected from Planck, rather than
a reconstruction of the linear matter power spectrum itself.

The result is shown in fig. 17. The lower panel shows the
reconstructed, binned ratio of the power spectrum with respect
to the prediction from Planck 2018 (in blue), compared to the
results obtained from simulated DES Y3 data vectors generated
by sampling the likelihood at the Planck 2018 cosmology (in
gray). In the upper panel, we multiply these ratios by the fidu-
cial linear power spectrum, shown in black. We find that the re-
constructed spectrum is roughly 20% lower than the prediction
in the range 𝑀 ∼ 0.03 h Mpc−1

𝑈𝑉1 h Mpc−1 that is constrained by
DES Y3 data. In particular, the reconstruction is about 2𝐿 low
around 𝑀 ∼ 0.3 h Mpc−1, which remains close to the linear regime.

7 CONCLUSIONS

In this work, we have used data from the first three years of ob-
servations by the Dark Energy Survey (DES Y3), including a cat-
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Figure 17. Matter power spectrum at redshift 𝑃 = 0 reconstructed from
DES Y3 shear power spectra, using a simplified version of the method of
Tegmark & Zaldarriaga (2002). The fiducial linear matter power spectrum,
computed at Planck 2018 cosmology (Planck Collaboration et al. 2020), is
shown by the solid, black line (the corresponding non-linear power spec-
trum is shown by the dashed, black line). The blue boxes, centered on (𝑀 , P̂)
(see eq. (33)) and of height given by the square-root of the diagonal of the
covariance matrix S (see eq. (34)), show the reconstructed power spectrum
within log-spaced 𝑀 bins. In the background, we show in gray the result of
the reconstruction for 1000 simulated data vectors drawn from the likeli-
hood at Planck cosmology; however, in this case, the height of the boxes
represents the standard deviation of the results, offering a simple check for
the covariance matrix. The reconstructed power spectrum is about 20% (or
roughly 2 𝑄) lower than the fiducial one around 𝑀 ∼ 0.3 h Mpc−1.

alog of over a hundred million galaxy shape measurements (Gatti,
Sheldon et al. 2021c) split into four redshift bins (Myles, Alarcon
et al. 2021), to measure tomographic cosmic shear power spectra.
Our measurements over the DES Y3 footprint of 4143 deg2 are
based on the pseudo-𝑅𝑅 method, with a consistent spherical sky
approach using the NaMaster software (Alonso et al. 2019). We
generally followed the DES Y3 methodology laid out in Amon et al.
(2022); Secco, Samuroff et al. (2022) and the modeling choices pre-
sented in Krause et al. (2021) to infer cosmological constraints, and
found 𝑊8 ≡ 𝐿8

√
εm/0.3 = 0.793+0.038

−0.025 (0.810) using cosmic shear
alone. We also included geometric information from small-scale
galaxy-galaxy lensing ratios (Sánchez, Prat et al. 2021) to tighten
the constraint to 𝑊8 = 0.784 ± 0.026 (0.798).

Following Amon et al. (2022); Secco, Samuroff et al. (2022),
we modeled intrinsic alignments with TATT (Blazek et al. 2019)
that coherently includes tidal alignment (TA) and tidal torquing
(TT) mechanisms. We found, as in Secco, Samuroff et al. (2022),
that the data does not strongly favor this model over the simpler
non-linear alignment (NLA) model, as the data does not seem to
constrain the TT contribution efficiently (even when including 𝑋-
modes in the analysis, which may be sourced by TT). In all cases,
we find consistent cosmological constraints, although using NLA
tightens constraints on 𝑊8 by about 25%.

We include smaller scales that had been discarded in the fidu-
cial analysis, switching from HaloFit to HMCode to model the
non-linear matter power spectrum, thus including the effect of bary-
onic feedback, known to be a major source of uncertainty for cosmic
shear at small scales (Chisari et al. 2018; Huang et al. 2019). We de-
rived a set of scale cuts that approximately map to a cut-off 𝑀max in
Fourier modes. When raising 𝑀max from 1 h Mpc−1 to 5 h Mpc−1, we

MNRAS 000, 1–31 (2022)

Doux et al 2022



DM - DR Interactions and S8
• Gentle DM-DR interactions (WZDR+) can suppress power in scale 

dependent fashion - may be relevant for S8 (Buen-Abad, Marques-Tavares, Schmaltz, 2015)


• Generally suppresses power too much at the largest scales

χ χ

ψ ψ

Γ ∼
T2

Mχ



A cosmological history

• Can we have a scenario where at late times (post MeV) the system comes 
into equilibration with the SM


• Rich dynamics in this dark sector relevant for cosmological observables



A cosmological history
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Can have rich dynamics of interactions and mass thresholds at late times



Phenomena to consider

• Late equlibration -> Generate radiation for H0


• Mass thresholds


• Heat up the fluid -> Affects CMB


• Turn off interactions -> Affects S8


• Dark matter scattering -> Affects S8



Thermalizing via the neutrino portal
Neutrinos can mix with 

dark fermions  
(aka sterile neutrinos)

Neutrinos are produced 
in the SM, then oscillate 
into a superposition of 

Dark and SM states

If scattering is present, 
after t~MFP/c, the states  
decohere and the state 
either is sterile or SM 

Repeat νSM cos θνSM + sin θνd (sin2 θ 0
0 cos2 θ)

Oscillate Scatter

ΓνSM−>νd
=

1
4

sin2 2θ ΓscatterΓνSM−>νd
=

1
4

sin2 2θm Γscatter

In general, scattering is higher at high T, mixing is lower at high T  
=>  

mixing wins  
production increases as temperature drops until some scale

cf Dodelson & Widrow



Beyond minimal sterile neutrinos

ℒ ⊃ mdark νdνd + mmix νdνSM + λ ϕ νdνd
νd νd

ϕ



Finite (dark) temp effects

ΓνSM−>νd
=

1
4

sin2 2θm Γscatter

New dark effects 
Can suppress mixing 
(Dasgupta + Kopp)

New dark effects 
Can enhance scattering 

(Bringmann et al)



Tnu

Primordial 
Abidance dilutes 

Td~Tnu

time->

Higgs decay  
produces some  

primordial abundance

Oscillation+scatter 
Becomes important 

T ~ Tnu^(1/6)

Sectors equilibrate

Sectors decouple
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a light mediator in the dark thermal bath and can be pa-
rameterized as 2EV DS

e↵ ⌘ ↵dT 2
d [4]. In what follows we

take this as the definition of ↵d. The expression for the
e↵ective potential (and interaction discussed below) as-
sumes that the dark sector is self-equilibrated with tem-
perature Td and vanishing chemical potentials.2 The ex-
act expression can vary with Dirac/Majorana, internal
symmetries and other model dependencies which amount
to an overall O(few) rescaling of ↵d. The precise map-
ping onto a specific model Lagrangian is straightforward
and not important for our discussion.

The scattering rate is the sum of the SM weak interac-
tion �SM = n⌫h�viSM = c�T 4

⌫G
2
FE with c� ' 0.92 [1],

and the scattering rate of the dark fermions which
we parameterize as �DS = nDSh�viDS ⌘ ↵2

dT
2
d /E.

This assumes that the cross section scales as h�viDS '
h↵2

d/E
2
CMiDS ' ↵2

d/(ETd) and nDS / T 3
d . Here  is a

number greater than one, which allows for the presence
of additional dark states which scatter via � exchange.
For simplicity, we set  = 3, and in general it would shift
the precise region of parameter space but not make it
much larger or smaller.

Finally, averaging the conversion rate � over the ther-
mal distribution of the SM neutrinos approximately re-
places E ! 3T⌫ so that

h�i =
1
4 sin

2 2✓0(3c�T 5
⌫G

2
F + ↵2

d
T 2
d

T⌫
)

⇣
cos 2✓0 + ↵d

T 2
d

m2
⌫d

+ 18cV
G2

FT 6
⌫

m2
⌫d

⌘2
+ sin2 2✓0

. (4)

Armed with this expression for the conversion rate we
can now determine if and when the dark sector equili-
brates with the neutrinos by comparing � with the ex-
pansion rate, H ' T 2

⌫ /MPl. There are two important
limits to consider. First, in the Dodelson-Widrow [1]
limit of vanishing dark sector interactions, ↵d = 0, the
maximum conversion rate occurs whenGFT 3

⌫ /m⌫d ⇠ 0.1.
This peak temperature is above an MeV so that full equi-
libration from DW would yield a thermalized dark sector
before BBN which is excluded. The dark sector equi-
librates if � = H at the peak, therefore we obtain the
constraint (in the DW limit) that ✓20m⌫dMPlGF <⇠ 100.

A qualitatively di↵erent solution is obtained when the
dark sector interactions dominate over the weak interac-
tions. Then h�i/H grows monotonically with decreasing
temperature, and we can solve for the equilibration tem-
perature (when Td = T⌫) by setting

1 ' h�i
H

' ✓20↵
2
dT⌫

(1 + ↵d
T 2
⌫

m2
⌫d
)2

MPl

T 2
⌫

' ✓20
MPl

m⌫d

m5
⌫d

T 5
⌫

, (5)

giving Tequil = m⌫d (✓20MPl/m⌫d)1/5. It is remarkable
both that this is independent of ↵d and the dependence

2 We discuss the assumption that the dark sector is self-
thermalized later. We also ignore a possible shift of the scalar
expectation value in the thermal background which would change
the mass of ⌫d.

on ✓20Mpl is mild because of the 1/5 power. Thus for a
very broad range in parameter space the dark sector equi-
librates with the neutrinos, and it does so at a tempera-
ture which is at most a few orders of magnitude above the
dark fermion mass. This yields the important qualitative
result that in the presence of a light (⌧ MeV) fermion,
the natural equilibration scale is below the BBN scale,3

but also above recombination, as shown in the bulk re-
gions of Fig. 3. Note that the small “fin” regions on the
right of Fig. 3 correspond to parameter space in which
↵dT 2

equil/m
2
⌫d < 1.

This intuition is borne out by a numerical integration
of the Boltzmann equation, as we now discuss. We as-
sume that the dark sector starts out cold and initial dark
abundances arise from Higgs decay and weak interac-
tions. A small additional population below a thermal
abundance does not significantly change the results.
One starts with the Boltzmann equation for the phase

space distribution function of the dark fermions, which
we can integrate and simplify under the assumption the
dark sector is self-thermalized,

d

d log a

�
a4⇢DS

�
=

h�i
H

a4
 
⇢⌫ � ⇢⌫

⇢DS

����
eq.

⇢DS

!
, (6)

where ⇢DS is the total energy density in the DS including
⌫d,� and any other (relativistic) particles that the DS
may have. Note that we added a simple back-reaction
term on the right-hand side which accounts for conver-
sions ⌫d ! ⌫ and vanishes in equilibrium. This term is
negligible until the dark sector and the SM neutrinos are
close to equilibration and roughly models the correct ap-
proach to equilibrium. Any interactions of ⌫d with dark
sector particles can redistribute energy within the dark
sector but because of energy conservation they cannot
contribute to the evolution of the total energy density of
the DS in (6).
The assumption that the DS is self-thermalized which

allowed us to write h�i as a function of the dark sec-
tor temperature is not necessarily true. At early times,
when DS particle number densities are still small the DS
self-interactions could be smaller than Hubble. How-
ever, the DS always reaches kinetic equilibrium before
it equilibrates with the neutrinos and in most of param-
eter space number-changing interactions in the DS also
erase any chemical potentials before equilibration with
the neutrinos. For simplicity, we assume that the DS
self-thermalizes rapidly in Figs. 2 and 3. For small ↵d

this may require additional interactions which could be
in V (�) or involve additional dark sector particles.
The evolution of the DS energy density depends on

the model parameters. Fig. 2 shows the DS temperature

3 A similar phenomenology can be achieved in models of neutrinos
which couple to a Majoron, and resonantly produce dark matter
at late times [17].
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A qualitatively di↵erent solution is obtained when the
dark sector interactions dominate over the weak interac-
tions. Then h�i/H grows monotonically with decreasing
temperature, and we can solve for the equilibration tem-
perature (when Td = T⌫) by setting

1 ' h�i
H

' ✓20↵
2
dT⌫

(1 + ↵d
T 2
⌫

m2
⌫d
)2

MPl

T 2
⌫

' ✓20
MPl

m⌫d

m5
⌫d

T 5
⌫

, (5)

giving Tequil = m⌫d (✓20MPl/m⌫d)1/5. It is remarkable
both that this is independent of ↵d and the dependence

2 We discuss the assumption that the dark sector is self-
thermalized later. We also ignore a possible shift of the scalar
expectation value in the thermal background which would change
the mass of ⌫d.

on ✓20Mpl is mild because of the 1/5 power. Thus for a
very broad range in parameter space the dark sector equi-
librates with the neutrinos, and it does so at a tempera-
ture which is at most a few orders of magnitude above the
dark fermion mass. This yields the important qualitative
result that in the presence of a light (⌧ MeV) fermion,
the natural equilibration scale is below the BBN scale,3

but also above recombination, as shown in the bulk re-
gions of Fig. 3. Note that the small “fin” regions on the
right of Fig. 3 correspond to parameter space in which
↵dT 2

equil/m
2
⌫d < 1.

This intuition is borne out by a numerical integration
of the Boltzmann equation, as we now discuss. We as-
sume that the dark sector starts out cold and initial dark
abundances arise from Higgs decay and weak interac-
tions. A small additional population below a thermal
abundance does not significantly change the results.
One starts with the Boltzmann equation for the phase

space distribution function of the dark fermions, which
we can integrate and simplify under the assumption the
dark sector is self-thermalized,

d

d log a

�
a4⇢DS

�
=

h�i
H

a4
 
⇢⌫ � ⇢⌫

⇢DS

����
eq.

⇢DS

!
, (6)

where ⇢DS is the total energy density in the DS including
⌫d,� and any other (relativistic) particles that the DS
may have. Note that we added a simple back-reaction
term on the right-hand side which accounts for conver-
sions ⌫d ! ⌫ and vanishes in equilibrium. This term is
negligible until the dark sector and the SM neutrinos are
close to equilibration and roughly models the correct ap-
proach to equilibrium. Any interactions of ⌫d with dark
sector particles can redistribute energy within the dark
sector but because of energy conservation they cannot
contribute to the evolution of the total energy density of
the DS in (6).
The assumption that the DS is self-thermalized which

allowed us to write h�i as a function of the dark sec-
tor temperature is not necessarily true. At early times,
when DS particle number densities are still small the DS
self-interactions could be smaller than Hubble. How-
ever, the DS always reaches kinetic equilibrium before
it equilibrates with the neutrinos and in most of param-
eter space number-changing interactions in the DS also
erase any chemical potentials before equilibration with
the neutrinos. For simplicity, we assume that the DS
self-thermalizes rapidly in Figs. 2 and 3. For small ↵d

this may require additional interactions which could be
in V (�) or involve additional dark sector particles.
The evolution of the DS energy density depends on

the model parameters. Fig. 2 shows the DS temperature

3 A similar phenomenology can be achieved in models of neutrinos
which couple to a Majoron, and resonantly produce dark matter
at late times [17].

If there are dark states below an MeV they will 
naturally thermalize “near” their mass
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FIG. 2: The ratio Td/T
⇤CDM
⌫ obtained from solving Eq. (6)

as a function of T
⇤CDM
⌫ for an example point with ↵d = 1

and m⌫d = 100 eV, and initial dark sector temperature, Td,
calculated from Higgs decay. Here T

⇤CDM
⌫ the tempera-

ture of the active neutrinos in a reference ⇤CDM with no
dark sector. Equilibration between the sectors occurs when
Td/T

⇤CDM
⌫ ⇡ 1. The dark (light) gray region shows where

this occurs after BBN (neutrino decoupling). See text for
details.

note that ↵d ' 1 may require higher orders in perturba-
tion theory for precise predictions. Nevertheless, we use
it as an example because it allows the largest range of
angles ✓0 to equilibrate, see Fig. 3.

Our primary result is contained in Fig. 3 which shows
the large regions of parameter space where the dark sec-
tor comes into equilibrium with the SM neutrinos at some
point before T⌫ = m⌫d and where equilibration is reached
below T⌫ = MeV, i.e. after neutrino decoupling and
BBN. For the purposes of this Figure we define the equi-
libration temperature Tequil as the temperature at which
⇢DS crosses ⇢⌫ gDS

⇤ /g⌫⇤ with ⇢DS obtained from solving (6)
with the back reaction term omitted.

It is worth noting that because of mixing of the SM
neutrinos, for most of parameter space all three SM neu-
trinos equilibrate with the DS in rapid succession. That
only a single SM neutrino equilibrates with the DS can
occur for special regions in parameter space. Either the
couplings of ⌫d are tuned such that it only couples to a
single SM neutrino mass eigenstate, or the dark param-
eters are such that equilibration with the first of the SM
neutrinos occurs at a temperature just above m⌫d so that
⌫�⌫d conversion shuts o↵ because m⌫d is reached before
another SM neutrino can equilibrate.

Discussion One of the simplest extensions of the
standard model is to include a massive neutral fermion
that mixes with the SM neutrino. It is natural - perhaps
expected - that it should come with its own interaction,
as well. In the presence of such an interaction, we find
that even for very small couplings and mixings, a new

FIG. 3: Colored regions indicate the parameter space over
which the dark sector comes into equilibrium with the SM
neutrinos after BBN, for di↵erent values of ↵d. The lower
boundary of each region is determined by Tequil = m⌫d, while
the upper (right) boundary comes corresponds to equilibra-
tion after BBN (dark shaded) or neutrino decoupling (light
shaded), i.e. Tequil = 100 keV or = 1MeV, respectively. Also
shown are contours of fixed equilibration temperatures Tequil

(dashed contours labeled 10 eV, 1 keV) for the ↵d = 1 case.
The gray region shows the parameter space over which equi-
libration would occur above BBN in absence of dark interac-
tions via Dodelson-Widrow production.

eV—MeV mass fermion is equilibrated with the neutrino
bath at a temperature within a few orders of magnitude
of its mass, and often much less. Consequently, it typi-
cally equilibrates after BBN, leaving no imprint on light
element abundances. Its implications for the CMB and
LSS, however, can be significant. Once the dark fermion
equilibrates at Tequil, a whole series of additional particles
can come into equilibrium as well, including dark mat-
ter, which can have mass above Tequil, including above
an MeV.
Although the equilibration of the dark sector does not

immediately increase the energy density in radiation, it
can transform some or all of the radiation into an inter-
acting fluid. The associated mass threshold can change
the relative amount of relativistic radiation, turn on or
o↵ interactions in a dark sector, and provide a basis for
equilibrating a broader dark sector which may contain
part or all of the dark matter.

• At high values of 100 eV <⇠ m⌫d <⇠ MeV, the dark
sector equilibrates with neutrinos and then goes
through the mass threshold of the dark fermion
before the CMB is directly sensitive to the tran-

e e

A light dark state with 
self interactions, will 
naturally thermalize 
at late time - even 

with very small 
mixing



Steps in the dark sector
• When a particle becomes non-

relativistic, it deposits its entropy in 
the remaining light particles


• This heats up the light particles, 
raising their temperature


• It also redshifts slightly more slowly 
that radiation during the transition


• This means  (the amount of dark 
radiation) is naturally time-dependent 
with a mass threshold

Neff

ρ ∼ a−4

ρ ∼ a−4

ρ ∼ a−4

ρ ∼ a−3.93

ρ
ρa−4

= (
gbefore

gafter )
1/3

Time ⟶

 
ρ

⟶



• What if dark radiation has a “step” (changes Neff) during the CMB era?

An ~eV step

6

FIG. 3: Comparison of the marginalized 1D and 2D posterior distributions for the Hubble parameter H0 and the late-time
value of the e↵ective number of neutrinos in radiation Ne↵,IR (including the Standard Model neutrino contribution) for the
⇤CDM+Ne↵ , SIDR, and WZDR models when fitting to the dataset D (not including SH0ES) in the left set of panels or D+
(including SH0ES) in the right set of panels.

Model ��
2

Ne↵,IR H0 (km/s/Mpc)

⇤CDM 0.0 3.04 68.2 [67.5, 68.9]

⇤CDM+Ne↵ �5.7 3.37 [3.20, 3.63] 70.0 [68.9, 71.6]

SIDR �10.6 3.51 [3.31, 3.77] 71.0 [69.6, 72.6]

WZDR �15.1 3.63 [3.37, 3.92] 71.4 [69.7, 73.0]

TABLE II: As in Table I, but after fitting to the dataset D+
that includes SH0ES.

We note at the outset that the best-fit points for the
dataset D in conventional models involving additional
free-streaming or strongly-interacting radiation are either
identical or very close to ⇤CDM and do not improve the
�
2 by more than O(0.1). This changes with the addition

of the WZDR-step. Considering only data from D, we
see a slight improvement going from SIDR to WZDR, re-
ducing the best-fit �2 by 1.2, about as would be expected
with the addition of the one new parameter zt, which has
a posterior mean-value of zt = 1.9+0.9

�0.6 ⇥ 104. Thus, al-
though the quantitative pull is small, there is a nonzero
preference in the data, independent of SH0ES, for a step
in an additional interacting fluid component.6

6
Many previous analyses have assumed that the additional ra-

diation was also present during BBN, increasing the predicted

abundance of primordial helium Yp. Since that is a much earlier

era, we instead assume that the radiation is populated well after

BBN, at temperatures below ⇠ 100 keV [38]. This is a natural

assumption in the context of interacting fluids, and we make this

Remarkably, the preferred value for H0 in a fit to D
is shifted to larger values in the WZDR model, with
a best-fit of H0 = 69.1 km/s/Mpc, as compared to
H0 = 67.9 km/s/Mpc for SIDR, H0 = 67.7 km/s/Mpc
for ⇤CDM+Ne↵ , and H0 = 67.6 km/s/Mpc for ⇤CDM.
A similar trend is evident in the 90% C.L. ranges listed
in Table I. This immediately raises the question: can
WZDR help address the existing tension between the
⇤CDM-inferred value of H0 and the late-universe mea-
surement of H0 = (73.2 ± 1.3) km/s/Mpc by the SH0ES
collaboration?

The short answer to this question is: yes, the pres-
ence of the WZDR-step does allow for a significant re-
duction to this tension. Earlier analyses have shown
that additional free-streaming radiation can naturally al-
low for a larger value of H0 when fitting to the dataset
D+ that includes SH0ES, but only at the cost of sig-
nificantly worsening the fit to the SH0ES-independent
dataset D. Making this radiation interacting (as in the
SIDR model) somewhat ameliorates the issue, but this
is still constrained by the high-` multipoles of the CMB
polarization power spectrum [12, 15, 17]. In the WZDR
model, this is compensated by the the `-dependent mod-
ifications to the CMB, allowing for additional levels of

same assumption for the SIDR model, so as not to penalize it

compared to WZDR. For completeness, we also show results for

SIDR and WZDR in which the energy density in interacting ra-

diation is present during BBN in Table IV of Appendix B. For

the ⇤CDM+Ne↵ model, we assume that the extra radiation is

present during BBN, as considered in Ref. [10].

Relaxing the BBN->Helium assumption improves fit for Neff, 

interactions improve fit more, 


step improves fit more


Does not “solve” the Hubble tension (see later)
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FIG. 5: A comparison of the posteriors for the minimal stepped fluid (WZDR) when fitting to either the SH0ES-independent
dataset D (red) or the dataset D+ that includes SH0ES (blue). The dark and light shaded regions correspond to 68.3% and
95.4% C.L., respectively. Comparing the two sets of posteriors, we see that a fit to data including SH0ES prefers a larger value
of H0 and a correspondingly larger energy density in dark radiation, as expected, while leaving the preferred location of the
transition zt nearly unchanged. Since an enhanced radiation density strengthens the e↵ect of the step on the CMB, the data is
increasingly sensitive to the location of the transition, as can be noted from the narrower posterior for zt when fitting to D+.
Along with the increase in radiation density, the fit to D+ also requires increases in !cdm, !b, as well as ✓s and ns.
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FIG. 5: A comparison of the posteriors for the minimal stepped fluid (WZDR) when fitting to either the SH0ES-independent
dataset D (red) or the dataset D+ that includes SH0ES (blue). The dark and light shaded regions correspond to 68.3% and
95.4% C.L., respectively. Comparing the two sets of posteriors, we see that a fit to data including SH0ES prefers a larger value
of H0 and a correspondingly larger energy density in dark radiation, as expected, while leaving the preferred location of the
transition zt nearly unchanged. Since an enhanced radiation density strengthens the e↵ect of the step on the CMB, the data is
increasingly sensitive to the location of the transition, as can be noted from the narrower posterior for zt when fitting to D+.
Along with the increase in radiation density, the fit to D+ also requires increases in !cdm, !b, as well as ✓s and ns.

CMB+ only

w/ SH0ES



What about S8?



Apples to apples

redshift dependence of b is the major challenge for galaxy clustering surveys.
Perturbative treatment of biasing leads to an expansion in terms of local
operators formed out of the density and tidal field up to a given order
in perturbation theory [114], which gives rise to a number of physically
motivated parameters that can be marginalised over when fitting for the
shape of the galaxy power spectrum [e.g. 115]. Note, however, that since the
high momenta of neutrinos permit them to travel over cosmological distances,
the bias expansion will depend on the history of the matter and neutrino
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Figure 3: Contributions of the matter power spectrum P (k, z) to various large scale
structure observables. The contributions are weighted by signal-to-noise ratio anticipated
for each observable: the CMB lensing power spectrum using the lensing reconstruction
expected from CMB-S4, the angular power of galaxy density using observations from the
Vera Rubin Observatory gold sample, and number counts of clusters with mass greater
than 10

14 h�1M�. The CMB lensing weighting is multiplied by an additional factor of 3
relative to the others in order to make the CMB lensing contributions more visible despite
the very broad lensing redshift kernel. The values of wavenumber k and redshift z that
contribute to a given angular scale ` in the Limber approximation are shown by the black
dotted lines. The purple dashed line shows the free-streaming scale kfs(z) from Equation (7)
for standard neutrinos with

P
m⌫ = 58 meV; massive neutrinos suppress the amplitude

of P (k, z) to the right of that line. Nonlinear corrections to the matter power spectrum
are expected to be non-negligible to the right of the red dash-dot line. Figure reproduced
from [107].
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DM - DR Interactions and S8
• Gentle DM-DR interactions (WZDR+) can suppress power - maybe 

relevant for S8 (Buen-Abad, Marques-Tavares, Schmaltz, 2015)


• Generally suppresses power too much at the largest scales

χ χ

ψ ψ

Γ ∼
T2

Mχ



• The same mass threshold in the dark sector can also help “turn off” DM-
DR interactions

A step in DM-DR interactions
Aloni et al 2022
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Scale dependent structure suppression 4
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FIG. 1: Visualization of the dark matter scattering e!ect on cosmology. The solid black curve is given by the ratio of the
WZDR+ linear MPS (Pidm) to that of ”CDM (Pcdm) evaluated at z = 0, with both models assuming the same background
cosmology. The dashed blue curve shows the ratio of the WZDR+ dark matter momentum transfer rate # to Hubble over
redshifts z. The fourier scales k on the bottom axis are aligned with redshifts on the top axis, such that each value of redshift
z is the horizon crossing time of the scale k on the bottom. The dotted red line marks the transition redshift zt = 104.3 used
to compute this figure. Small scales that enter the horizon while the scattering rate is significant su!er a suppression of power,
while large scales that grow after the transition behave e!ectively like cold dark matter. In this figure we assumed ωb = 0.02272,
ωdm = 0.1288, h = 0.7135, As = 2.1 → 10→9, ns = 0.9660, εreio = 0.0586, zt = 104.3, NIR = 0.6, #0 = 10→6 Mpc→1, Yp = 0.2455,
and one massive neutrino at mω = 0.06 eV such that the standard model Ne! = 3.044.

where ˙ denotes derivative with respect to conformal
time, H = aH is the conformal Hubble parameter, h

is the metric perturbation1 in the synchronous gauge, w

and cs are the dark radiation equation of state and sound
speed respectively, ! is the momentum transfer rate at
current time given by Eq. 4, and R → ωidm/(ωdr + Pdr).

III. ANALYSIS

A. Likelihoods & Methods

We compute cosmological perturbations of WZDR+
with a modified version of CLASS v3.1 [43], includ-
ing Eqs. 4 & 5 numerically. We perform Markov-
chain Monte Carlo (MCMC) sampling using the Mon-
tePython v3.5 [44, 45] package with a Metropolis-
Hastings algorithm. The WZDR+ free parame-
ters we sample are the six ”CDM free parameters

1 h is the metric perturbation in this equation only. For every

other occurrence of h in this work, it is the dimensionless Hubble

parameter.

{εb, εdm, 100ϑs, ln (1010As), ns, ϖreio}
2, as well as three

extra parameters {log10 (zt), NIR, !0}, all with uniform
priors. We assume 100% interacting dark matter in
WZDR+ (set fidm = 1 in CLASS). In our fits we fix
the primordial helium abundance Yp = 0.245 rather than
the standard BBN computation by CLASS, as to simu-
late a dark sector that thermalizes after BBN. We fol-
low the convention of the Planck analysis [2] and include
one massive neutrino with mω = 0.06 eV and two mass-
less neutrinos, ensuring that the total standard model
Ne! = 3.044. We use HALOFIT [46, 47] to compute
non-linear corrections for the MPS.

The list of datasets we consider are as follows. Our
baseline dataset D includes

• Planck CMB Anisotropy [2], including both
high-ϱ TT, TE, EE and low-ϱ TT, EE, with the
full set of nuisance parameters.

• CMB Lensing. We use a joint likelihood that
includes both Planck 2018 and ACT-DR63 lensing
results [7, 10].

2 ωdm refers to cold dark matter for !CDM and interacting dark

matter for WZDR+.
3

We used the numerical likelihood available at https://github.
com/ACTCollaboration/act_dr6_lenslike



Study this

• Baseline dataset: Planck CMB, Pantheon, BOSS BAO, ACT DR 6 CMB 
lensing (D)


• Additional datasets: DES power spectrum (DES)


• ACT DR4 + SPT 3G (ACT+SPT)



DM-DR scattering + lensing
Zhou, NW 2409.06771
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and slope of the power in Ly-ω data to study WZDR+.
We implement a multivariate Gaussian likelihood us-

ing the five binned data points with the lowest variance,
which are the central bins ranging from 0.0178 h/Mpc →

k → 1.78 h/Mpc. We refer to this P (k) likelihood as
simply “DES” for the rest of this work.

C. Results

As discussed in section III A, we separate our di!er-
ent datasets into simple categories, to which we here add
some additional perspective. We choose the dataset D

to be a baseline representation the early universe data,
although we have included within D the lensing like-
lihoods from ACT-DR6, as it has been in agreement
with Planck within ”CDM. This combines a set of well-
understood datasets with extensive study. We also have
early universe data from ACT-DR4 and SPT-3G, but
these datasets are not as vetted and understood as oth-
ers. There are no reasons to doubt these data, but in
light of this and tensions with other data, it is helpful to
separate them out. Given the well known Hubble ten-
sion, we also leave out the H0 prior from SH0ES for the
moment.

Within this baseline D dataset we find

#m = 0.3088+0.0061
→0.006 , H0 = 69.07+1.2

→1.1,

S8 = 0.8056+0.023
→0.025, [D]

where we have reported the mean and 1-ε deviations for
the derived parameters #m, ε8 and S8. We additionally
perform a ”CDM fit to the same dataset, and in Fig. 2
we compare the posterior distributions of the two models
in the H0 and S8 parameter plane. We see the S8 distri-
bution for WZDR+ is significantly wider than that for
”CDM, with the peak shifted to a lower value relative to
the D result for ”CDM of S8 = 0.8297+0.0097

→0.0096.
In some sense, this is one of our primary results. Even

before consulting additional datasets we see that the
value of S8 in this model has both a lower mean and,
more importantly, a significantly wider range of allowed
values. This suggests that the tensions between extracted
values of S8 from D in comparison with weak lensing and
galaxy count data are at the very least model dependent.
In particular, the CMB lensing results of ACT-DR6 are
still compatible with a wide range of values of S8.

WZDR+ combined D also has a wider allowed range of
values of H0, which is consistent with previous results[35]
where ACT-DR6 was not included.

The overall fit of WZDR+ is not significantly bet-
ter ($ϑ

2
tot ↑ ↓1 for three new degrees of freedom), so

these datasets alone do not have any preference for new
physics.

This wider range of S8 and H0 is suggestive that
WZDR+ provides a better fit to the overall data than
”CDM. We can do this by including additional data on
galaxy structure and/or data from SH0ES.
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FIG. 2: Posterior in the H0-S8 plane, for !CDM and WZDR+
fitted to dataset D. The grey band shows the 1ω and 2ω

regions of the SH0ES measurement.

We will begin by incorporating S8 measurements. As
we have noted, there is no direct measurement of S8 from
DES or KiDS within the WZDR+ model. However, we
can combine D with a late universe MPS likelihood from
DES Y3. This combination yields

#m = 0.303+0.006
→0.0061, H0 = 70.9+1.4

→1.4,

S8 = 0.7872+0.017
→0.018. [D+DES]

The values of both #m and S8 are compatible at better
than 1ε. The central value shifts down, as expected.

A concrete way to quantify WZDR+’s performance
against ”CDM is through locating their best-fit points
for a given data set, and using these points to compute
the $AIC (Akaike information criterion, see [26] for a
discussion). It is defined as

$AIC = ϑ
2
WZDR+ ↓ ϑ

2
!CDM + 2 ↔ Nextra , (6)

where Nextra = 3 is the number of extra parameters in
WZDR+ compared to ”CDM. Thus, lower scores de-
note an overall better fit to the data than ”CDM, which
is only achievable for $ϑ

2 reached beyond the penalty
for having extra parameters. We find $AIC = +5.26
for D. This positive and order unity scores suggest that
WZDR+ fits to early universe data at a comparable level
as ”CDM. However, the scores lowers considerably to
$AIC = ↓18.84 once we add in the DES data, signifying
that WZDR+ is able to accommodate the combination of
early and late universe measurements much better than
”CDM. We provide a comprehensive summary of best
fit points, ϑ

2 and $AIC in Table. I.

In a model with DM-DR scattering, there is a preference for a lower value of S8 
even with ACT lensing

Planck+ACT lensing+ 
Pantheon+BOSS BAO
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FIG. 3: Matter power spectra from the !CDM and WZDR+ best fits to D+ACT+SPT, compared to DES Y3 measurements.
The power spectra are normalized to a fiducial matter power spectrum Pfid(k) used in the DES analysis, obtained from a Planck
2018 fiducial cosmology. The black dashed line at y = 0 denotes this benchmark. The red and green curves denote the !CDM
and WZDR+ best fits respectively. The blue boxes are the DES data points inferred from angular shear Cω’s, where the width
denote the log-k bin widths, and the heights denote the uncertainty.

ferent scales are tightly correlated within !CDM, one
can yield a narrow value for S8, even if the actual scales
probed have only minimal overlap with the window func-
tion for S8. In alternative models, this tight relationship
is broken, and the di”erent datasets are easily in accord.
We show the various extracted values of S8 from the dif-
ferent combinations of data in Fig. 5.

The Hubble tension is a more complicated question,
however. While WZDR+ has a broader range of allowed
values of H0 compared with !CDM, it cannot be claimed
to directly “solve” the tension, but only ameliorate it.
While the DES data seem to favor a higher value of H0,
the ACT and SPT data, taken together, favor a lower
value. The combination of these along with D leave the
overall posterior for H0 largely unchanged from D, alone.
Related to this conflict in H0, we find that ACT and SPT
prefer lower values for both ωdm and NIR, while DES fa-
vors the opposite. This is shown in Fig. 6. These datasets
end up pushing the posteriors in opposite directions with
comparable statistical weights, resulting in multimodal
distributions in the joint fit.

At the same time, it is worth noting that the inclusion
of a SH0ES prior does not impact WZDR+’s ability to
address the S8 tension. That is, including a SH0ES prior,
which we show in Fig. 7, does, indeed, shift the value of
H0 to higher values. However, the allowed range of S8

remains quite broad, and the combination of data does
not significantly shift the value of S8 extracted from the

data without the SH0ES prior.
In summary, we have considered the WZDR+ model

in the context of a broad dataset, including recent CMB
lensing results from ACT-DR6. We find the model pro-
vides a simple fit to the data, well above that of !CDM,
and naturally accommodates suppressed structure on
small scales. At the present time, it does not appear
to solve the Hubble tension, which is a direct result of
the inclusion of primary CMB data from ACT and SPT.

Beyond simply addressing tensions, WZDR+ allows us
a concrete model, grounded in well-understood particle
physics to study modifications beyond !CDM. With a
limited set of parameters, it provides a solid laboratory
to search for new physics in the dark sector.
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“Best fit” naturally gives power suppression w/o DES



So what happens if we include more data



• Dataset:


• Planck


• BOSS BAO


• Pantheon


• ACT DR6 Lensing


• DES
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• Dataset:


• Planck


• BOSS BAO


• Pantheon


• ACT DR6 Lensing


• ACT DR4 + SPT 3G
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H0 is an interesting story. As previously found for the
dataset D, there is a broader uncertainty within WZDR+
(→ 1.2 vs 0.4) and a higher best fit (68.64 vs 67.56) rela-
tive to !CDM. This is in better agreement with SH0ES
than !CDM. However, the best fit value of NIR = 0.154
is still within 1ω = 0.16 of 0.

The addition of the DES data seems to change the sit-
uation. The best fit value of H0 in D+DES shifts to
71.10, a roughly 1.7ω shift. The 1ω range in H0 easily
overlaps the preferred range from SH0ES. There is some
mild preference for new physics in this dataset, evidenced
by the best fit value of NIR = 0.569, which is approxi-
mately 2.3ω from 0. The best fit value of 106”0 = 0.586
is similarly almost 2ω from 0.

If the story ended here, it might appear there was
a concrete direction of the data - namely, that within
WZDR+, there was a consistent indication for additional
interacting radiation, and a gentle interaction with dark
matter, turning o# at a redshift near z = 20, 000. How-
ever, the inclusion of additional primary CMB data from
ACT and SPT seem at odds with this interpretation,
specifically with regards to H0.

We can step back and include primary CMB measure-
ments from ACT and SPT to our baseline dataset D. We
find that fitting WZDR+ to D+ACT+SPT yields

$m = 0.3114+0.0056
→0.0056, H0 = 68.19+0.68

→0.67,

S8 = 0.7965+0.025
→0.027. [D+ACT+SPT]

Again, we find a lower value of S8 with a broader un-
certainty. The addition of ACT and SPT shift the S8

value lower compared to D, by about 0.5ω. Indeed, the
fit of D+ACT+SPT provides a good fit to DES data, as
one sees in Fig. 3.

H0, however, shifts to the lower value 68.19 with a
narrower spread of ω → 0.68. The best fit value of NIR

is now shifted to lower values, with a best fit of 0.012,
which is essentially indistinguishable from 0. While the
error bars are larger than !CDM, the overall push of
these additional CMB data is to reinforce the Hubble
tension.

We can now consider the full set of data in our analysis
- D+ACT+SPT+DES - and find

$m = 0.3073+0.0054
→0.0055, H0 = 69.2+1.2

→1.2,

S8 = 0.7778+0.017
→0.018. [D+ACT+SPT+DES]

The S8 value obtained between all these di#erent com-
binations remains largely consistent. The %AIC=-16.58
is still significant, indicating this model provides a much
better fit to the cumulative data than !CDM alone.

In contrast, the DES and SPT+ACT data appear to
pull H0 in opposite directions, yielding a distribution
largely unchanged from the initial D data, alone. We
show a comparison of the four fits in Fig. 4.
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FIG. 4: Posterior in the H0-S8 plane, for WZDR+ fitted to
four dataset combinations. For each dataset, the dark and
light contours correspond to the 68% and 95% confidence re-
gions, respectively. The grey band shows the one and two
sigma ranges from the SH0ES direct measurement.

IV. DISCUSSION

The era of precision cosmology is yielding a new period
where models beyond !CDM can be studied, and quan-
titative comparisons made. Although there are many
parametric extensions to !CDM, there is a narrower set
that is grounded in well-understood particle physics, and
which provide superior fits to some data sets. In this
paper, we have considered one such model, WZDR+.
With the presence of gentle interactions between dark
matter and dark radiation, coupled with a mass thresh-
old which turns o# those interactions, WZDR+ naturally
recovers the long-distance successes of !CDM while pro-
viding non-trivial modifications at early times and short
distances.

An important consequence of this is that the tensions
between di#erent scales of structure present in !CDM
are absent in WZDR+. Even the newest CMB lensing re-
sults from ACT-DR6 are compatible with a much broader
range of S8. We have incorporated a scale-dependent
power spectrum from DES as well and find no tension
between the data sets. Moreover, we find WZDR+ im-
proves the fit to these data dramatically, improving ε

2

by 22, yielding %AIC = ↑16.58.
Importantly, we do not study the overall fit of the

model by including an S8 posterior derived in !CDM.
While many analyses have previously used such priors,
one should recognize the significant caveats that accom-
pany this. Because the amplitudes of fluctuations at dif-

Different data pull in different directions



Is Late Equlibration of Dark Radiation the answer 
to the Hubble and S8 tensions?!!??!?

• It doesn’t matter!


• Well, it does matter, but it’s not really the point


• The point is there’s a tremendous amount of freedom of what can happen 
in the eV-MeV era


• And this will be constrained by future data


• And being excited about that is what I learned from Lawrence and Hitoshi



Thank you (Lawrence and Hitoshi!) very much!


