Baryogenesis from only the Standard Model CP Violation

Gilly Elor

Weinberg Theory Group University of Texas, Austin

Unraveling the Particle World and the Cosmos at Berkeley Workshop in Honor of Lawrence and Hitoshi

Sept 26 2024

Image: Photo I took from LBNL a few years ago

Outline

- Background on Mesogenesis.
- Bigger picture and the space of mechanisms.
- Mesogenesis with a Morphing Mediator.
- Outlook (bigger picture, again)
- Based on: [GE, Rachel Houtz, Seyda Ipek, Martha Ulloa, Submitted to PRL, 2408.12647], *"The Standard Model CP Violation is Enough"*.

As well as: [J. Berger, GE, PRL, 2301.04165] [GE, A. Guerrera, JHEP, 2211.10553] [G. Alonso-Alvarez, GE, M. Escudero, B. Fornal, B. Grinstein, J.M. Camalich. PRD, 2111.12712] [F. Elahi, GE, R. McGehee, PRD, 2109.09751] [GE, R. McGehee, PRD, 2011.06115] [G. Alonso-Alvarez, GE, M. Escudero, PRD, 2101.02706] [G. Alonso-Alvarez, GE, E. Nelson, H. Xiao. JHEP, 1907.10612] [GE, M. Escudero, A. E. Nelson, PRD, 1810.00880]

Upcoming: [GE, Can Kilic, Sanjay Mathai, Fall 2024 (targeted)]

Mesogenesis Baryogenesis and Dark Matter from Mesons

The Sakharov conditions:

- Out of thermal equilibrium: *GeV scale mesons produced when the Universe was at MeV scales.*
- CP Violation: *From SM Meson systems*.
- Baryon number violation: *SM Meson decays to dark baryons (or leptons)*.

Features:

- Signals!
- The SM CPV can be enough!
- Baryon asymmetry production right up to the era of BBN possible.
- Reconstructable dark matter.

-2 -1 0Asymmetry in B_d^0 System

A [%]

Neutral *B* Mesogenesis Out of thermal equilibrium and CPV:

Late decay of an scalar field

Decays at: $\Gamma_{\Phi} = H(T_R)$ to quarks $m_{\Phi} \in [5 \text{ GeV}, 100 \text{ GeV}]$

Neutral B Mesogenesis An Explicit Model 1 1 1 1 1

Kinematics: $m_{\psi} < m_B - m_{\text{Baryon}} < 4.3 \,\text{GeV}$ Matter stability: $m_{\psi} > m_p - m_e \simeq 937.8 \,\text{MeV}$

Equal and opposite dark and visible baryofi(asympmetries genierated.

$$Y_{\mathcal{B}} - Y_{\bar{\mathcal{B}}} = -\left(Y_{\psi} - Y_{\bar{\psi}}\right)$$
G. Elor

New Particles

	Field	Spin	Q_{EM}	Baryon no.	\mathbb{Z}_2	Mass	
Colored Mediator:	\mathcal{Y}	0	-1/3	-2/3	+1	$\mathcal{O}({ m TeV})$	Could be a squark
Dark Baryon:	$\psi_{\mathcal{B}}$	1/2	0	-1	+1	$\mathcal{O}({ m GeV})$	Kinematics forbid proton decay

Allowed by all the symmetries: $\mathcal{L}_{\mathcal{Y}} = -\sum_{i,j} y_{u_i d_j} \mathcal{Y}^* \bar{u}_{iR} d_{jR}^c - \sum_k y_{\psi d_k} \bar{\psi}_{\mathcal{B}} \mathcal{Y} d_{kR}^c + \text{h.c.}$

Effective four fermion operator at MeV scales:

$$\mathcal{O}_{d_k, u_i d_j} = \mathcal{C}_{d_k, u_i d_j} \epsilon_{\alpha \beta \gamma} (\bar{\psi}_{\mathcal{B}} d_k^{\alpha}) (\bar{d}_j^{c \beta} u_i^{\gamma})$$
$$\mathcal{C}_{d_k, u_i d_j} \equiv y_{\psi d_k} y_{u_i d_j} / M_{\mathcal{Y}}^2$$

This interaction *does not* change baryon number

SUSY UV completion: [G. Alonso-Alvarez, GE, A. E. Nelson, H. Xiao, JHEP, 1907.10612]

New Decays

Neutral *B* Mesogenesis Dark Matter?

The dark baryon is unstable and will decay to baryonic matter, washing out the asymmetry. ψ_B cannot be the dark matter.

Neutral *B* Mesogenesis Two-Component Dark Matter

Dark fermion must quickly decay within the dark sector $\mathcal{L}_d \supset y_d \bar{\psi}_{\mathcal{B}} \xi \phi_d$

Neutral B Mesogenesis

[GE, M. Escudero, A. E. Nelson, PRD, 1810.00880]

Baryogenesis and Dark Matter from B Mesons

 $^{\pm}B^{0}) < \Delta m_{B}^{0}$

Neutral *B* Mesogenesis Boltzmann Equations

Scalar, Radiation, Hubble:

$$\frac{dn_{\Phi}}{dt} + 3Hn_{\Phi} = -\Gamma_{\Phi}n_{\Phi}$$
$$\frac{d\rho_{\rm rad}}{dt} + 4H\rho_{\rm rad} = +\Gamma_{\Phi}m_{\Phi}n_{\Phi}$$
$$H^2 = \frac{8\pi}{3M_{\rm Pl}^2}\left(\rho_{\rm rad} + m_{\Phi}n_{\Phi}\right)$$

Dark Matter:

 $\frac{dn_{\phi+\phi^*}}{dt} + 3Hn_{\phi+\phi^*} = 2\Gamma^B_{\Phi}n_{\Phi} - 2\langle\sigma v\rangle_{\phi}\left(n^2_{\phi+\phi^*} - n^2_{\mathrm{eq},\phi+\phi^*}\right)$

Baryon Asymmetry:

$$\frac{dn_{\phi-\phi^*}}{dt} + 3Hn_{\phi-\phi^*} = 2\Gamma_{\Phi}^B \sum_q \operatorname{Br}\left(\bar{b} \to B_q^0\right) A_{\operatorname{SL}}^q f_{\operatorname{deco}}^q n_{\Phi}$$

$$Y_{\mathcal{B}} \simeq 5 \times 10^{-5} \sum_{i=d,s} \left[\text{Br} \left(B_i^0 \to \bar{\psi}_{\mathcal{B}} \,\mathcal{B}_{\text{SM}} \right) A_{sl}^i \right] \alpha_i(T_{\text{R}})$$

(product of two experimental observables)

To generated the observed baryon asymmetry:

$$A_{\mathrm{SL}}^{s,d} \times \mathrm{Br}\left(B^0 \to \psi \,\mathcal{B} \,\mathcal{M}\right) > 10^{-6}$$

Signals of Neutral B-Mesogenesis

[A. Alonso-Alvarez, GE, M. Escudero, PRD, 2101.02706]

Neutral *B* Mesogenesis Discovery Potential

[A. Alonso-Alvarez, GE, M. Escudero, PRD 2101.02706]

Collider Searches for B-Mesogensis

Designated search developed for LHCb [2106.12870]. On-going analysis!

Collider Searches for B-Mesogensis

Need: $A_{\rm SL}^{s,d} \times {\rm Br}\left(B^0 \to \psi \mathcal{B} \mathcal{M}\right) > 10^{-6}$				
Operator/Decay	Initial State	Final state]	Should Balla improve their consitivity?
$\mathcal{O} = \psi b u d$ $\bar{b} \to \psi u d$	B_d B_s B^+ Λ_b	$egin{aligned} \psi + n (udd) \ \psi + \Lambda (uds) \ \psi + p (duu) \ ar{\psi} + \pi^0 \end{aligned}$		Should Belle improve their sensitivity? Can we do baryogenesis with with $Br < 10^{-5}$? Yes!
$\mathcal{O} = \psi b u s$ $\bar{b} \to \psi u s$	$\begin{array}{c} B_d \\ B_s \\ B^+ \\ \Lambda_b \end{array}$	$\psi + \Lambda (usd)$ $\psi + \Xi^0 (uss)$ $\psi + \Sigma^+ (uus)$ $\bar{\psi} + K^0$		
$\mathcal{O} = \psi b c d$ $\bar{b} \to \psi c d$	B_d B_s B^+ Λ_b	$\psi + \Lambda_c + \pi^- (cdd)$ $\psi + \Xi_c^0 (cds)$ $\psi + \Lambda_c (dcu)$ $\bar{\psi} + \overline{D}^0$		Three other channels through which neutral B Mesogenesis can proceed.
$\mathcal{O} = \psi b c s$ $\bar{b} \to \psi c s$	B_d B_s B^+ Λ_b	$\psi + \Xi_c^0 (csd)$ $\psi + \Omega_c (css)$ $\psi + \Xi_c^+ (csu)$ $\bar{\psi} + D^- + K^+$		

Outline

- Background on Mesogenesis.
- Bigger picture and the space of mechanisms.
- Mesogenesis with a Morphing Mediator.
- Outlook (bigger picture, again).
- Based on: [GE, Rachel Houtz, Seyda Ipek, Martha Ulloa, Submitted to PRL, 2408.12647], *"The Standard Model CP Violation is Enough"*.

As well as: [J. Berger, GE, PRL, 2301.04165] [GE, A. Guerrera, JHEP, 2211.10553] [G. Alonso-Alvarez, GE, M. Escudero, B. Fornal, B. Grinstein, J.M. Camalich. PRD, 2111.12712] [F. Elahi, GE, R. McGehee, PRD, 2109.09751] [GE, R. McGehee, PRD, 2011.06115] [G. Alonso-Alvarez, GE, M. Escudero, PRD, 2101.02706] [G. Alonso-Alvarez, GE, E. Nelson, H. Xiao. JHEP, 1907.10612] [GE, M. Escudero, A. E. Nelson, PRD, 1810.00880]

Upcoming: [GE, Can Kilic, Sanjay Mathai, Fall 2024 (targeted)]

Why Neutral B Mesons?

Particle Data Group:

D^+ decay mode	$A_{CP}^{f}/10^{-2}$
$K_S^0 \pi^+$	-0.41 ± 0.09
$K^-\pi^+\pi^+$	-0.18 ± 0.16
$K^-\pi^+\pi^+\pi^0$	$-0.3 \pm 0.6 \pm 0.4$
$K^0_S \pi^+ \pi^0$	$-0.1 \pm 0.7 \pm 0.2$
$K^0_S \pi^+ \pi^+ \pi^-$	$0.0\pm1.2\pm0.3$
$\pi^+\pi^0$	2.4 ± 1.2
$\pi^+\eta$	1.0 ± 1.5
$\pi^+\eta$	1.0 ± 1.5
$\pi^+\eta'(958)$	-0.6 ± 0.7
$K^+K^-\pi^+$	0.37 ± 0.29
$\phi\pi^+$	0.01 ± 0.09
$a_0(1450)^0\pi^+$	$-19 \pm 12^{+8}_{-11}$
$\phi(1680)\pi^+$	$-9 \pm 22 \pm 14$
$\pi^+\pi^+\pi^-$	-1.7 ± 4.2

G. Elor

Why Neutral B Mesons?

$$m_{\psi_B} > m_p - m_e \simeq 937.8 \,\mathrm{MeV}$$

Kinematics: Dark baryons must be GeV scale. Only *B* mesons are heavy enough to decay into GeV scale. $\sqrt{1}$

Charged D and B Mesogenesis

[GE, R. McGehee, PRD, 2011.06115] and [F. Elahi, GE, R. McGehee, PRD, 2109.09751]

Mesogenesis

Mechansim	CPV	Dark Sector	Observables	Relevant Experiments	
B^0 Mesogenesis	$B^0_s \ \& \ B^0_d \ ext{oscillations}$	dark baryons	$\begin{vmatrix} A_{sl}^{s,d} \\ Br(B^0 \to \mathcal{B}_{SM} + X) \end{vmatrix}$	LHCb B Factories, LHCb	GE, M. Escudero, A. Nelsor (2018)
D^+ Mesogenesis	D^{\pm} decays	dark leptons and dark baryons	$\begin{array}{c} A^{D}_{CP} \\ & \text{Br}_{D^{+}} \\ & \text{Br}(D^{+} \to \ell^{+} + X) \end{array}$	B Factories, LHCb B Factories, LHCb peak searches e.g. PSI, PIENU	GE, R. McGehee (2020)
B^+ Mesogenesis	B^{\pm} decays	dark leptons and dark baryons	$\begin{array}{c} A^B_{CP} \\ & \text{Br}_{B^+} \\ & \text{Br}(B^+ \to \ell^+ + X) \end{array}$	B Factories, LHCb B Factories, LHCb peak searches e.g. PSI, PIENU	F. Elahi, GE, R. McGehee (2021)
B_c^+ Mesogenesis	B_c^{\pm} decays	dark baryons	$\begin{array}{c c} & A^{B_c}_{CP} \\ & \text{Br}_{B_c^+} \\ \text{Br}(B^+ \to \mathcal{B}^+_{\text{SM}} + X) \end{array}$	LHCb, FCC LHCb, FCC <i>B</i> Factories, LHCb	F. Elahi, GE, R. McGehee (2021)
Mesogenesis with a Morphing Mediator	$\begin{array}{c} B^0_s \ \& \ B^0_d \\ \text{oscillations} \end{array}$	dark baryons and dark phase transition	$\begin{array}{c} A^{\mathrm{s,d}}_{\mathrm{sl,SM}} \\ \mathrm{Br}(B^0 \to \mathcal{B}_{\mathrm{SM}} + X) \\ \mathrm{Gravitational\ Waves} \end{array}$	LHCb B Factories, LHCb Pulsar Timing Arrays, CMB	GE, R. Houtz, S. Ipek, M. Ulloa, (2024)
Mesogenesis with Dark CPV	$\begin{array}{c c} \text{either } B^0_d, B^0_s, \\ B^{\pm}, B^{\pm}_c \text{decays} \end{array}$	dark baryons and dark CP phase	$\begin{vmatrix} A_{\rm CP}^{\rm dark} \\ Br(\mathcal{M} \to \mathcal{B}_{\rm SM} + X) \end{vmatrix}$	EDMs, Flavor Observables B Factories, LHCb	GE, C. Kilic, S. Mathai (2024 <i>targeted</i>)

Common to all mechanisms proposed to date:

colored mediator
$$\mathcal{L}_{\mathcal{Y}} = -\sum_{i,j} y_{u_i d_j} \mathcal{Y}^* \bar{u}_{iR} d_{jR}^c - \sum_k y_{\psi d_k} \bar{\psi}_{\mathcal{B}} \mathcal{Y} d_{kR}^c + \text{h.c.} + \text{dark sector}$$

One mechanisms direct signal is another mechanisms indirect signal

G. Elor

Mesogenesis

CPV	Dark Sector	Observables	Relevant Experiments	
$B^0_s \ \& \ B^0_d$	dark baryons	$A_{sl}^{s,d}$	LHCb	GE, M. Escudero, A. Nelsor
oscillations		$\operatorname{Br}(B^0 \to \mathcal{B}_{\mathrm{SM}} + X)$	B Factories, LHCb	(2018)
		A^{D}_{CP}	B Factories, LHCb	
D^{\pm} decays	dark leptons	Br_{D^+}	B Factories, LHCb	GE, R. McGehee (2020)
()	and dark baryons	$Br(D^+ \to \ell^+ + X)$	peak searches e.g. PSI, PIENU	
		A^B_{CP}	B Factories, LHCb	F. Elahi, GE, R. McGehee
B^{\pm} decays	dark leptons	Br_{B^+}	B Factories, LHCb	(202I)
	and dark baryons	$Br(B^+ \to \ell^+ + X)$	peak searches e.g. PSI, PIENU	(2021)
]]		$A^{B_c}_{CP}$	LHCb, FCC	F. Elahi, GE, R. McGehee
B_c^{\pm} decays	dark baryons		LHCb, FCC	(202I)
<u> </u>		$Br(B^+ \to \overset{D_c}{\mathcal{B}^+_{SM}} + X)$	B Factories, LHCb	
$B^0_s\ \&\ B^0_d$	dark baryons and	$A_{ m sl,SM}^{ m s,d}$	LHCb	GE, R. Houtz, S. Ipek,
oscillations	dark phase transition	D (D)	B Factories, LHCb	M. Ulloa, (2024)
		Gravitational Waves	Pulsar Timing Arrays, CMB	M. Chou, (2024)
either $B_d^0, B_s^0,$	dark baryons	$A_{ m CP}^{ m dark}$	EDMs, Flavor Observables	GE, C. Kilic, S. Mathai
B^{\pm}, B_c^{\pm} decays	and dark CP phase	$Br(\mathcal{M} \to \mathcal{B}_{SM} + X)$	B Factories, LHCb	(2024 targeted)
	$B^0_s \& B^0_d$ oscillations D^{\pm} decays B^{\pm} decays B^{\pm}_c decays B^{\pm}_c decays $B^0_s \& B^0_d$ oscillations either $B^0_d, B^0_s,$	$B_s^0 \& B_d^0$ oscillationsdark baryons D^{\pm} decaysdark leptons and dark baryons B^{\pm} decaysdark leptons and dark baryons B^{\pm} decaysdark leptons and dark baryons B_c^{\pm} decaysdark baryons B_c^{\pm} decaysdark baryons $B_s^0 \& B_d^0$ oscillationsdark baryons and dark phase transition	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Baryogenesis with only the SM CP Violation

Common to all mechanisms proposed to date:

colored mediator
$$\mathcal{L}_{\mathcal{Y}} = -\sum_{i,j} y_{u_i d_j} \mathcal{Y}^* \bar{u}_{iR} d_{jR}^c - \sum_k y_{\psi d_k} \bar{\psi}_{\mathcal{B}} \mathcal{Y} d_{kR}^c + \text{h.c.} + \text{dark sector}$$

One mechanisms direct signal is another mechanisms indirect signal

G. Elor

Outline

- Background on Mesogenesis.
- Bigger picture and the space of mechanisms.
- Mesogenesis with a Morphing Mediator.
- Outlook (bigger picture, again).
- Based on: [GE, Rachel Houtz, Seyda Ipek, Martha Ulloa, Submitted to PRL, 2408.12647], *"The Standard Model CP Violation is Enough"*.

As well as: [J. Berger, GE, PRL, 2301.04165] [GE, A. Guerrera, JHEP, 2211.10553] [G. Alonso-Alvarez, GE, M. Escudero, B. Fornal, B. Grinstein, J.M. Camalich. PRD, 2111.12712] [F. Elahi, GE, R. McGehee, PRD, 2109.09751] [GE, R. McGehee, PRD, 2011.06115] [G. Alonso-Alvarez, GE, M. Escudero, PRD, 2101.02706] [G. Alonso-Alvarez, GE, E. Nelson, H. Xiao. JHEP, 1907.10612] [GE, M. Escudero, A. E. Nelson, PRD, 1810.00880]

Upcoming: [GE, Can Kilic, Sanjay Mathai, Fall 2024 (targeted)]

Based on Neutral B Mesogenesis

Based on Neutral B Mesogenesis

Baryon asymmetry produced through decays mediated by a heavy colored particle:

$$\mathcal{O}_{d_k, u_i d_j} = \mathcal{C}_{d_k, u_i d_j} \epsilon_{\alpha \beta \gamma} (\bar{\psi}_{\mathcal{B}} d_k^{\alpha}) (\bar{d}_j^{c \beta} u_i^{\gamma})$$
$$\mathcal{C}_{d_k, u_i d_j} \equiv y_{\psi d_k} y_{u_i d_j} / M_{\mathcal{Y}}^2$$

- Collider constraints require mediator *Y* to have a TeV scale mass
- Perturbativity: $y_{\psi d_k}, y_{u_i d_j} \lesssim 4\pi$ [A. Alonso-Alvarez, GE, M. Escudero, PRD 2101.02706] Arrows indicate 95% CL projections for 2025 10⁻² Dark Matte $\mathrm{Br} \propto 1/M_{\mathcal{Y}}^4$ Branching fraction: **Belle-II** LHCb e.g. and **Belle-II & LHCb** $-A_{SL}^{d}$ 10⁻³ B_d **ATLAS & CMS** aryogenesis SM Λ u **BaBar/Belle** Ó World Averages m Ы 10⁻4 ⊾ 10 What if the mediator was lighter during the 10^{-2} 10^{-4} 10^{-3} 10^{-5}

 A^s_{SL}

LHCb

Elor

era of baryon production than it is today?

Morphing the Mediator

Tricks with Dark Sector Phase Transitions:

"Light Dark Matter through Resonance Scanning" Djuna Croon, GE, Rachel Houtz, **Hitoshi Murayama**, Graham White, PRD (2020) 2012.15284 "Origins of Hidden Sector Dark Matter II: Collider Physics" Cliff Cheung, GE, Lawrence Hall, Piyush Kumar JHEP (2011) 1010.0024

"Origins of Hidden Sector Dark Matter I: Cosmology" Cliff Cheung, GE, Lawrence Hall, Piyush Kumar JHEP (2011) 1010.0022

Morphing the Mediator

Can the SM CPV be enough?

Can the SM CPV be enough?

		$\Gamma_0\equiv\Gamma_B _{m_{\psi_1}}$	$_{\mathcal{B}}=1 ext{GeV}/\mathcal{C}^2_{b,u_i d_j}$
Operator	$(M^f_{\mathcal{Y}})_{\min} [ext{TeV}]$	Decay	$\Gamma_0 \left[{ m GeV}^5 ight]$
$\mathcal{O}_{b,ud}$	$\sim 1.7 \sqrt{y_{\psi b} y_{ud}}$	$B_d o \bar{\psi}_{\mathcal{B}} n$	$3.5_{\pm 0.4} \cdot 10^{-5}$
		$B_s \to \bar{\psi}_{\mathcal{B}} \Lambda$	n.a.
$\mathcal{O}_{b,us}$	$\sim 1.7 \sqrt{y_{\psi b} y_{us}}$	$B_d \to \bar{\psi}_{\mathcal{B}} \Lambda$	$1.4_{\pm 0.1} \cdot 10^{-4}$
		$B_s \to \bar{\psi}_{\mathcal{B}} \Xi^0$	$3.2_{\pm 0.1} \cdot 10^{-5}$
$\mathcal{O}_{b,cd}$	$\sim 0.9 \sqrt{y_{\psi b}y_{cd}}$	$B_d \to \bar{\psi}_{\mathcal{B}} \Sigma_c^0$	$0.7_{\pm 0.4} \cdot 10^{-6}$
		$B_s \to \bar{\psi}_{\mathcal{B}} \Xi_c^0$	$6.6_{\pm 3.3} \cdot 10^{-7}$
$\mathcal{O}_{b,cs}$	$\sim 0.9 \sqrt{y_{\psi b}y_{cs}}$	$B_d \to \bar{\psi}_{\mathcal{B}} \Xi_c^0$	$4.7_{\pm 2.0} \cdot 10^{-6}$
		$B_s \to \bar{\psi}_{\mathcal{B}} \Omega_c$	$5.0_{\pm 3.0} \cdot 10^{-6}$
$\mathcal{O}_{d_k, u_i d_j}$			

$$Y_{\mathcal{B}} \simeq 5 \times 10^{-5} \sum_{i=d,s} \left[A_{\mathrm{SL}}^{s,d} \times \mathrm{Br} \right] \alpha_i(T_{\mathrm{R}})$$

Morphing the Mediator

A mediator mass increase from ~200-500 GeV to about 1 TeV will generate the baryon asymmetry with only the SM CPV

• Seems like a reasonable phase transition ? Scalar *morphon* gets a vev.

- I) <u>Nucleation:</u> The mass shift must occur after the BAU is generated.
- 2) <u>Percolation:</u> The Universe must effectively transit from the false to the true morphon vacuum.
- 3) <u>Avoid Inflation</u>: To avoid triggering inflation after the BAU is generated or during BBN, the scalar morphon must not dominate the energy density of the Universe.

Can we find an example?

• Did this "trick" cost us a signal??

Morphing with Dark Dynamics

• Toy morphon potential
$$V_{\text{scalar}} = m_{\mathcal{Y}_0}^2 |\mathcal{Y}|^2 + y_{\phi \mathcal{Y}} |\mathcal{Y}|^2 \phi + \frac{1}{2} \lambda_{\phi \mathcal{Y}} |\mathcal{Y}|^2 \phi^2 + \frac{1}{4} \lambda (\phi^2 - \phi_0^2)^2 + \epsilon \phi_0 \phi^3$$

 $M_{\mathcal{Y}}^2(\phi) = m_{\mathcal{Y}_0}^2 + y_{\phi \mathcal{Y}} \phi + \frac{1}{2} \lambda_{\phi \mathcal{Y}} \phi^2$ $v_{\text{false/true}} = \pm \phi_0 + \mathcal{O}(\epsilon)$

• Find example such that $M_{\mathcal{Y}}^i = M_{\mathcal{Y}}(v_{\text{false}}) = \mathcal{O}(100 \text{ GeV})$ $M_{\mathcal{Y}}^f = M_{\mathcal{Y}}(v_{\text{true}}) = \mathcal{O}(\text{TeV})$

Gravitational Wave Signal

The annihilation of the DW network can leave behind a stochastic gravitational wave background.

Searching for the Dark Matter

[J. Berger, GE. PRL. 2301.04165]

Signals at Neutrino Detectors

(for any Mesogenesis mechanisms involving decays to dark baryons)

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Inside the **Super-Kamiokande** water Cherenkov detector. Credit: Kamioka Observatory, ICRR, Univ. Tokyo

Dark Matter Induced Nucleon Decay

[J. Berger, GE. PRL. 2301.04165]

Mono-energetic meson (up to detector effects):

$$E_{\phi_{\mathcal{B}}N \to \xi\mathcal{M}}^{\mathcal{M}, \text{kin}} = \frac{m_{\mathcal{M}}^2 - m_{\xi}^2 + (m_N + m_{\phi_B})^2}{2(m_N + m_{\phi_B})} - m_{\mathcal{M}}$$

[J. Berger, G. Elor. Submitted to PRL. arXiv:2301.04165]

Signal and Background Simulation

[J. Berger, GE. PRL. 2301.04165]

Next: Searches in astrophysics and cosmology environments

Mesogensis with a Morphing Mediator

[GE, Rachel Houtz, Seyda Ipek, Martha Ulloa, Submitted to PRL, 2408.12647],

"The Standard Model CP Violation is Enough".

A mediator mass increase from ~200-500 GeV to about 1 TeV will generate the baryon asymmetry with only the SM CPV.

- Gravitational Wave signals from dark dynamics at current and upcoming PTAs.
- Dark matter signals are still present (induced nucleon decay)
- Motivation for collider searches to *improve branching fraction sensitivity to* $Br < 10^{-5}$

G. Elor

• As measurements of the charge asymmetry improve, motivation for seeing *only* the SM CPV

Outline

- Background on Mesogenesis.
- Bigger picture and the space of mechanisms.
- Mesogenesis with a Morphing Mediator.
- Outlook (bigger picture, again).
- Based on: [GE, Rachel Houtz, Seyda Ipek, Martha Ulloa, Submitted to PRL, 2408.12647], *"The Standard Model CP Violation is Enough"*.

As well as: [J. Berger, GE, PRL, 2301.04165] [GE, A. Guerrera, JHEP, 2211.10553] [G. Alonso-Alvarez, GE, M. Escudero, B. Fornal, B. Grinstein, J.M. Camalich. PRD, 2111.12712] [F. Elahi, GE, R. McGehee, PRD, 2109.09751] [GE, R. McGehee, PRD, 2011.06115] [G. Alonso-Alvarez, GE, M. Escudero, PRD, 2101.02706] [G. Alonso-Alvarez, GE, E. Nelson, H. Xiao. JHEP, 1907.10612] [GE, M. Escudero, A. E. Nelson, PRD, 1810.00880]

Upcoming: [GE, Can Kilic, Sanjay Mathai, Fall 2024 (targeted)]

Space of Mechanisms

Mechansim	CPV	Dark Sector	Observables	Relevant Experiments		
B^0 Mesogenesis	$B_s^0 \ \& \ B_d^0$	dark baryons	$A_{sl}^{s,d}$	LHCb	GE, M. Escudero, A. Nelsor	
	oscillations		$\operatorname{Br}(B^0 \to \mathcal{B}_{\mathrm{SM}} + X)$	B Factories, LHCb	(2018)	
			A^{D}_{CP}	B Factories, LHCb		
D^+ Mesogenesis	D^{\pm} decays	dark leptons	Br_{D^+}	B Factories, LHCb	GE, R. McGehee (2020)	
	<u> </u>	and dark baryons	$Br(D^+ \to \ell^+ + X)$	peak searches e.g. PSI, PIENU		
	1 .		A^B_{CP}	B Factories, LHCb	F. Elahi, GE, R. McGehee	
B^+ Mesogenesis	B^{\pm} decays	dark leptons	Br_{B^+}	B Factories, LHCb	(202I)	
	()	and dark baryons	$Br(B^+ \to \ell^+ + X)$	peak searches e.g. PSI, PIENU	(2021)	
	B_c^{\pm} decays		$A^{B_c}_{CP}$	LHCb, FCC	F. Elahi, GE, R. McGehee	
B_c^+ Mesogenesis		dark baryons	$\operatorname{Br}_{B_c^+}$	LHCb, FCC	(202I)	
	<u> </u>		$\left \operatorname{Br}(B^+ \to \widetilde{\mathcal{B}}^c_{\mathrm{SM}} + X) \right $	B Factories, LHCb		
Mesogenesis	$B^0_s \ \& \ B^0_d$	dark baryons and	$A^{ m s,d}_{ m sl,SM}$	LHCb	GE, R. Houtz, S. Ipek,	
with a Morphing	oscillations	dark phase transition		B Factories, LHCb	M. Ulloa, (2024)	
Mediator	۱!		Gravitational Waves	Pulsar Timing Arrays, CMB	Wi. Chica, (2024)	
Mesogenesis	either $B_d^0, B_s^0,$	dark baryons	$A_{ m CP}^{ m dark}$	EDMs, Flavor Observables	GE, C. Kilic, S. Mathai	
with Dark CPV	with Dark CPV $ B^{\pm}, B_c^{\pm}$ decays $ a$		$\operatorname{Br}(\mathcal{M} \to \mathcal{B}_{\mathrm{SM}} + X)$	B Factories, LHCb	(2024 targeted)	

CPV from entirely from the dark sector?

$$\mathcal{L}_{mass}^{\psi} = -\sum_{ab} M_{ab} \bar{\psi}_{\mathcal{B}}^{a} \psi_{\mathcal{B}}^{b} + \text{h.c} \longrightarrow A_{CP}^{\text{dark}} \equiv \frac{\Gamma(\bar{\mathcal{M}} \to \phi_{\mathcal{B}} \xi \bar{\mathcal{B}}_{\text{SM}}) - \Gamma(\mathcal{M} \to \phi_{\mathcal{B}}^{*} \xi \mathcal{B}_{\text{SM}})}{\Gamma(\bar{\mathcal{M}} \to \phi_{\mathcal{B}} \xi \bar{\mathcal{B}}_{\text{SM}}) + \Gamma(\mathcal{M} \to \phi_{\mathcal{B}}^{*} \xi \mathcal{B}_{\text{SM}})}$$
$$\longrightarrow \left[Y_{\mathcal{B}} \simeq 8.7 \times 10^{-11} \left[\frac{\text{Br}(\mathcal{M} \to \mathcal{B}_{\text{SM}} + \text{MET})}{10^{-4}} \frac{A_{CP}^{\text{dark}}}{10^{-2}} \right] \right] \text{Br as low as } 10^{-7} - 10^{-6} \text{ expected.}$$

<u>My message to experimentalists:</u> measuring Br to better sensitivity could discover baryogenesis. <u>My message to theorists:</u> it is experimentally motivated to fully explore the space of Meso mechanisms.

What is the Universe made of?

- Mesogenesis explains both the origin of the baryon asymmetry and the dark matter of the Universe.
- Six different mechanisms of Mesogenesis exist to date. One mechanisms direct signal is another mechanisms indirect signal.
- Experimentalists are searching for Mesogenesis!
- To fully take advantage of the experimental program we must comprehensively explore all possible mechanisms, variations, and signals.

How can we exist?

Image: Galaxy cluster SMACS 0723 as seen by the James Webb Space Telescope. Credit: NASA, STScl

Can the SM CPV be enough?

A mass increase from ~200-500 GeV to about 1 TeV will lead generate the baryon asymmetry with only the SM CPV

Baryon Asymmetry: Exotic *B* Meson Decays

Experimental input: exclusive rates

Use QCD techniques to compute meson to baryon decay rates in Mesogenesis

[G. Elor, A. Guerrera. JHEP, arXiv:2211.10553]

Limit on the coupling from re-casting LHC searches for squarks

[A. Alonso-Alvarez, G. Elor, M. Escudero, PRD arXiv:2101.02706]

Colored Triplet Scalar

Constraints from LHC squark searches

A SUSY Theory

MSSM, R Symmetry, and Dirac Gauginos and Sterile Neutrios

Superfield	R-Charge	L no.
$\mathbf{U}^c, \mathbf{D}^c$	2/3	0
Q	4/3	0
$\mathbf{H}_{u},\mathbf{H}_{d}$	0	0
$\mathbf{R}_u, \mathbf{R}_d$	2	0
S	0	0
L	1	1
\mathbf{E}^{c}	1	-1
\mathbf{N}_{R}^{c}	1	-1

"RPV" $\mathbf{W} = y_u \mathbf{Q} \mathbf{H}_u \mathbf{U}^c - y_d \mathbf{Q} \mathbf{H}_d \mathbf{D}^c - y_e \mathbf{L} \mathbf{H}_d \mathbf{E}^c + \frac{1}{2} \lambda_{ijk}^{"} \mathbf{U}_i^c \mathbf{D}_j^c \mathbf{D}_k^c$ $+ \mu_u \mathbf{H}_u \mathbf{R}_d + \mu_d \mathbf{R}_u \mathbf{H}_d$ $+ \lambda_u^t \mathbf{H}_u \mathbf{T} \mathbf{R}_d + \lambda_d^t \mathbf{R}_u \mathbf{T} \mathbf{H}_d + \lambda_d^s \mathbf{S} \mathbf{R}_u \mathbf{H}_d$. $\boldsymbol{\mathcal{L}} = \lambda_{113}^{"} \left(\tilde{d}_R^* u_R^\dagger b_R^\dagger + \tilde{u}_R^* d_R^\dagger b_R^\dagger + \tilde{b}_R^* u_R^\dagger d_R^\dagger \right) ,$ Gauge: $\mathcal{L}_{gauge} = -\sqrt{2}g(\phi T^a \psi^\dagger) \lambda^{a\dagger} + h.c.$

 $\Rightarrow -\sqrt{2}g(\tilde{d}_R^* d_R \tilde{B}^\dagger) - \sqrt{2}g(\tilde{d}_L d_L^\dagger \tilde{B}^\dagger) + \text{h.c.}$

Neutrio:

$$\mathbf{W} = \frac{\lambda_N}{4} \mathbf{S} \mathbf{N}_R^c \mathbf{N}_R^c + \mathbf{H}_u \mathbf{L}^i y_N^{ij} \mathbf{N}_R^{c,j} + \frac{1}{2} \mathbf{N}_R^c M_M \mathbf{N}_R^c + \text{h.c.},$$
$$\mathbf{W} = \frac{\lambda_N}{4} \mathbf{N}_R \left(\lambda_s \nu_R^\dagger \tilde{\nu}_R^* + \phi_s \nu_R^\dagger \nu_R^\dagger \right) + \text{h.c.}$$

Parameter space: "RPV" couplings and squark mass mixing G. Elor

A SUSY Theory

Superpartners and SM particles have different charge under an unbroken R-symmetry. We can identify this with Baryon number.

Superpartners as dark baryons.

	Field	Spin	Q_{EM}	Baryon no.	\mathbb{Z}_2	Mass
	Φ	0	0	0	+1	$11 - 100 \mathrm{GeV}$
MSSM Squark	\tilde{d}_R	0	-1/3	-2/3	+1	$\mathcal{O}({ m TeV})$
Dirac Bino	$\left[\begin{array}{c} \tilde{B} \\ \lambda_s^{\dagger} \end{array}\right]$	1/2	0	-1	+1	$\mathcal{O}({ m GeV})$
Right handed	$ u_R$	1/2	0	0	-1	$\mathcal{O}({ m GeV})$
neutrino multiplet	$\tilde{ u}_R$	0	0	-1	-1	$\mathcal{O}({ m GeV})$

B⁺ Mesogenesis

Freezing-In a Baryon Asymmetry

Example Benchmark point: $\operatorname{Br}(\pi^+ \to \ell_d e^+) = 10^{-3}$ 10⁻⁸ $-Y_{\ell_d} = 110Y_B^{\text{obs}}$ $T_R = 10 \text{ MeV}, m_{\Phi} = 6 \text{ GeV}$ $\bar{\ell}_d$ Yield $\langle \sigma v \rangle = 1 \times 10^{-15} \text{ GeV}^{-2}$ Dark Lepton Baryon and $\operatorname{Br}(\Phi \to \chi_1 \bar{\chi}_1) = 0.1$ Dark Lepton Lepton to Asymmetry Made Asymmetries SM Baryon $\sum_{f} N_{\pi}^{f} a_{CP}^{f} \mathrm{Br}_{D^{+}}^{f} = \left(-9.3 \times 10^{-4}\right)^{2}$ Transfer Set $10^{-4}Y_{\phi}$ 10^{-4} $\frac{d}{dt}\left(n_{\mathcal{B}} - n_{\overline{\mathcal{B}}}\right) + 3H\left(n_{\mathcal{B}} - n_{\overline{\mathcal{B}}}\right) =$ 10⁻⁸ $-Y_{\ell_d}$ $-\langle \sigma v \rangle n_{\chi_1} \left(n_{\ell_d} - n_{\bar{\ell}_d} \right)$ $Y_B^{\rm obs}$ Yield 10⁻¹² $\frac{n_{\chi_1} \langle \sigma v \rangle}{H(T)} \Big|_{T=T_R} \gtrsim \frac{Y_B^{\text{obs}}}{Y_L^{\text{dark}}} \,.$ 10⁻¹⁶ 10⁻²⁰ 10⁻⁶ 10⁻⁴ 0.01 Time (seconds)

B_c^+ Mesogenesis

$$\frac{Y_{\mathcal{B}}}{Y_{\mathcal{B}}^{\text{obs}}} \simeq \frac{\sum_{\mathcal{B}^+} \text{Br}_{B^+}^{\mathcal{B}^+}}{10^{-3}} \frac{\sum_f a_{\text{CP}}^f \text{Br}_{B_c^+}^f}{6.45 \times 10^{-5}} \frac{T_R}{20 \text{ MeV}} \frac{2m_{B_c^+}}{m_{\Phi}}$$