Towards Radiation-Hard Optical Data Transmission for HEP Using Silicon Photonics

NOT A TALK, **BUT (TRYING TO) ADDRESS THE OVERFLOW QUESTIONS FROM TUESDAY'S PRESENTATION !**

Q1, 2, 3,...

Recap: Silicon Photonics

Current deployment for HL-LHC

of neutrons per cm²

• Breaks at 1MRad/10¹⁵ n_{eq}/cm²

- Idea: fabricate photonic devices on silicon substrates infrastructure, tight integration with sensors and readout ASICs
- High radiation tolerance (> 1GRad TID and > 5x10¹⁶ n_{eq}/cm²)
- **Multiplexing**: wavelength, polarization

Recap: SiPh Transmitter Structure

- Modulation voltage changes (the electrical signal 0/1)
 - —> Carrier concentration changes
 - —> Refractive index changes

$$\begin{array}{l} \mathsf{ndex} \\ \Delta n = & -\frac{e^2 \,\lambda^2}{8\pi^2 c^2 \varepsilon_0 n} \frac{\Delta N_e}{m_e} + \frac{\Delta N_h}{m_h} \\ & \\ \mathsf{electrons} & \mathsf{holes} \end{array}$$

—> Resonant wavelength changes $nL = m \cdot \lambda res$ —> Output optical power changes

Recap: SiPh Transmitter Performance Parameters

Radiation Effects: Total Ionizing Dose (TID)

- Main damage from ionizing
 - —> Holes trapped at the SiO₂-Si interface
 - —> fixed positive charges push the free holes in the p-doped Si away
 - —> no conductive path between the p++ contact and the rib junction
 - —> pinch-off region
 - —> concentration variation fails

Radiation Hardness: Mitigate Pinch-off

MIAO HU

Radiation Effects: Displacement Damage (DD)

DD: non-ionizing radiation (neutrons, protons, heavy ions) knocks the atoms out from their lattice sites —>

. . .

Creation of defect states (E_T) within the bandgap

- recombination centers for charge carriers
- trapping sites for carriers
- compensation of donor and acceptor levels

- degradation of carrier mobility and lifetime
- —> Carrier concentration changes type conversion of dopants

DD should also matter !

Radiation Effects: Displacement Damage (DD)

- Q: DD should also matter ?
- A: Device dependent
- In silicon, 1x10¹⁶ n_{eq}/cm² (1MeV) creates a defect density O(10¹⁶ cm⁻³) << typical doping concentration in SiPh
 - p/n, p/n+, p/n++ usually 10¹⁷, 10¹⁸, 10¹⁹ cm⁻³
 - Intrinsic devices (e.g., PiN) suffer, while highly (even nominally) doped devices are insensitive to DD

 <u>art_As Simulation Preliminary</u>

Radiation Effects: Displacement Damage (DD)

- Q: DD should also matter ?
- A: Device dependent, highly doped devices are insensitive
- However, a blue shift in λ res is observed
 - Mainly due to structural changes in the SiO₂ network, resulting in a reduction in effective refractive index
- But this is not degradation!
 - Relative concentration change maintained, performance $\Delta\lambda/V$
 - (←→) and P1-P0 (↓) maintained
 - Only absolute working point shifted
 - Easy to fix, with a heater + feedback loop

Fiber Radiation Hardness

Current deployment for HL-LHC

- A graded index glass fiber
 - doped with fluorine (F-SiO2) to decrease the number of strained bonds to increase radiation hardness
- only holds up to 1 MRad TID

- Radiation-induced attenuation (RIA)
 - by design for glass
 - ionization of atoms in the glass structure creates color centers that absorb light at different wavelengths
 - Strongly correlated with the fiber manufacturing process (dopant and doping level, production process, drawing conditions) and to the conditions (light power, temperature)

Fiber Radiation Hardness

Possible SiPh-compatible solution to HL-LHC

Hollow-core photonic bandgap fiber

MIAO HU

Hollow-core fiber

- Air-filled (or vacuum) core surrounded by a
 - cladding structure of thin-walled glass tubes
 - Light travels in air/vacuum!

Periodic arrangement of high and low dielectric constant materials (glass and air) form photonic bandgaps

Transverse propagation of light of a certain wavelength is forbidden and can be guided along the fiber

Nested structure make light anti-resonate within the glass layers Fully reflected into the hallow core

Fiber Radiation Hardness

Possible SiPh-compatible solution to HL-LHC

- CERN's pushing this
 - So far to 30 MRad
 - Needs more study/tests

Hollow core Nested antiresonant fibre

MIAO HU

Nested structure make light anti-resonate within the glass layers Fully reflected into the hallow core

Si Photonic Integrated Circuit (PIC)

Q5

high radiation

front-end

- Need for a polarization control circuit
 - SiPhs are polarization sensitive (e.g. TE polarization has less loss than TM)
 - Designed to be TE mode operation
 - Fibers randomizes the polarization and causes polarization mode dispersion (PMD)
- Future: can also do polarization multiplexing
 - Q: But then at back-end, how to recover polarization after the light travels through **long-distance** fiber?
- A: A marker (a small sine wave) on the original PC at the tx, then maximize the TE marker signal in the **TE branch and the TM in the TM branch**

MIAO HU

Introduction: Harsh Environment at the HL-LHC

- The HL-LHC operation
 - Luminosity
 - Peak: 5-7 x 10^{34} cm- $^{2}s^{-1} \rightarrow 5-7x$
 - Integrated: 4000 fb⁻¹ -> 10x
 - Pile-up: up to $<\mu > ~ 132 (200?) -> 2-5x (3-7?)$
 - Imposed significant challenge on our detectors, specifically, on data transmission
 - **5-7x** data rate
 - Radiation: $2.3 \times 10^{16} \text{ n}_{eq}/\text{cm}^2$ and $1.2 \text{ GRad TID} \rightarrow 5 \text{ x}$

Introduction: Current Technology Starts to Break

- Currently deployed for HL-LHC data transmission: VCSELs (vertical cavity surface emitting lasers) + discrete PIN photodiodes + parallel fibers
- Bulky

- High power consumption
- Breaks at 1MRad/10¹⁵ n_{eq}/cm²

Introduction: Silicon Photonics (SiPh) is a Solution

- Idea: fabricate photonic devices on silicon substrates infrastructure
- Features:
 - Allows tight integration of optical components with particle sensors and readout ASICs —> **low mass**
 - Leveraging the existing and mature CMOS technology —> easy to scale, low cost
 - Low power consumption
 - **High radiation tolerance** (> 1 GRad TID and > 5x10¹⁶ n_{eq}/cm²)
 - Supports addition **multiplexing**: wavelength, polarization
 - Allows **high data rate** (>>Gb/s uplink, up to 5Gb/s downlink)

1. Structure of our silicon photonic transceiver and how it works

2. Radiation effects and methods for achieving hardness

MIAO HU

Outline

3. Our Irradiation runs and results

System Concept of a SiPh-based Data Link

Structure of the SiPh Transmitter

MIAO HU

SiPh Transmitter: Ring Modulator (RM)

- Ring resonator
 - Reverse biased pn junction

 Modulation voltage changes (the electrical signal 0/1) —> Carrier concentration changes —> Refractive index changes $\Delta n = -\frac{e^2 \lambda^2}{8\pi^2 c^2 \varepsilon_0 n} \frac{\Delta N_e}{m_e} + \frac{\Delta N_h}{m_h}$ Index

> holes electrons

—> Resonant wavelength changes $nL = m \cdot \lambda res$ —> Output optical power changes

SiPh Transmitter: Ring Modulator (RM)

- Ring resonator
 - Modulation voltage changes (the electrical signal 0/1)
 - —> …
 - —> Output optical power changes

MIAO HU

Choose $\lambda_{\text{laser}} = \lambda_{\text{opt}}$, where the eye diagram opening is the biggest, i.e. maximizes the optical modulation amplitude (OMA) = P1 - P0Pin **P0**

- Other performance parameters
 - Extinction ratio (ER) = P1/P0
 - Insertion loss (IL) = Pin P1
 - Modulation efficiency = $\Delta\lambda/V$

SiPh Transmitter: Thermal Tuning

- Si has high thermo-optic coefficient
 - Resonant wavelength λ res is sensitive to temperature fluctuations $\Delta\lambda \text{res} / \Delta T = 70 \text{pm} / ^{\circ} \text{C}$
- λ res varies also due to fabrication process
- $\longrightarrow \lambda_{opt}$ is detuned λ_{laser}
- A thermal tuning mechanism to compensate for the variations
 - A tungsten microheater
 - Excellent thermal conductivity
 - A feedback loop

—> Robust to temperature (over ~50°C range) and laser fluctuation

MIAO HU

SiPh Transmitter: Wavelength Division Multiplexing (WDM)

- Multiplexing: multiple data channels are transmitted simultaneously over a single optical fiber
- WDM: each channel operates at a different wavelength
 - Cascaded RMs with different radii: $r \propto nL = m \cdot \lambda res$
- Now: 4-channel
 - 4 RMs with 9.9, 10.0, 10.1, 10.2 um radii
 - λ res evenly spaced (150 nm)
- New: 10-channel, to be tested
- Future: dense WDM

MIAO HU

LBNL ATLAS WEEKLY

07162024

high radiation front-end

Si Photonic Integrated Circuit (PIC)

Need for a polarization control circuit

- SiPhs are polarization sensitive (e.g. TE polarization has less loss than TM)
 - Designed to be TE mode operation
- Fibers randomizes the polarization and causes polarization mode dispersion (PMD)
- Future: can also do polarization multiplexing

MIAO HU

high radiation front-end

Si Photonic Integrated Circuit (PIC)

Need for a polarization control circuit

- SiPhs are polarization sensitive (e.g. TE polarization has less loss than TM)
 - Designed to be TE mode operation
- Fibers randomizes the polarization and causes polarization mode dispersion (PMD)
- Future: can also do polarization multiplexing

MIAO HU

MIAO HU

- On-chip polarization controller

LBNL ATLAS WEEKLY 07162024

TM

path

MIAO HU

SMF 1D-GC

On-chip polarization controller

- **Polarization Splitter-Rotator (PSR)** simultaneously splits and rotates the polarization
 - Hybrid Si and SiN waveguide structure
- **Thermal phase shifters (PS)** adjusts the phase
 - p-doped polysilicon resistor alongside to the waveguide

• 2x2 multimode interferometers (MMIs) for recombination

Radiation Effects: Total Ionizing Dose (TID)

- Main damage from ionizing
 - —> Holes trapped at the SiO₂-Si interface
 - —> fixed positive charges push the free holes in the p-doped Si away
 - -> no conductive path between the p++ contact and the rib junction
 - —> pinch-off region
 - —> concentration variation fails

the p-doped Si away tand the rib junction

Radiation Hardness: Mitigate Pinch-off

MIAO HU

(a)

LBNL ATLAS WEEKLY

07162024

Radiation Hardness: Recovery

High temperature annealing recovers the TID damage

- **Ring modulators**
- PiN junctions for forward bias —> not promising 2022
 - 4 channel nominally doped WDM
 - **3 nominal PN channels**
 - 1 channel w/ design error (lower doping PiN)
- 4 channel highly doped WDM 2023
 - 10 channel highly doped WDM
 - D(dense)WDM

Future

MIAO HU

Our Devices

Polarization controller 2023 **PSR+PS** for **TE** operation 2024 PSR+PS w/ additional amplifier for TE operation Future _. W/ recovery circuit for polarization multiplexing

Irradiation Runs

• **Ring modulators**

4 channel nominally doped WDM

- 3 nominal PN channels
- 1 channel w/ design error (lower doping PiN)

- Other caveats
 - Currently, the RMs and polarization controllers are **NOT** integrated on the same chip, they are separate devices being irradiated separately
 - **Lower TID** than desired for polarization controller irradiation

Two irradiation runs with **Krypton-85 source**

- Only the channel w/ designed error was irradiated
- No optical input, only electrical
- No optical input, only electrical 3.

First SiPh polarization controller radiation results

- **Polarization controller**
- **PSR+PS** for **TE** operation

• • •

Irradiation Setups: Ring Modulator (XRM)

- X-ray Irradiation
 - Beam spot and dose map calibrated
 - Dose rate 1.95 MRad/hr
 - IV sweep/optical readout at a fixed interval
 - Track the key metrics over TID:
 - Leakage current
 - Increases with TID due to trapped charge
 - Optical performance
 - ER = P1/P0
 - OMA = P1 P0
 - Modulation Efficiency $\Delta\lambda/V$

orated fixed

 \sim

Irradiation Results: Ring Modulator (XRM)

Run 1: channel with design error

- No degradation observed to 100MRad
 - Modulation Efficiency $\Delta\lambda/V$
 - ER = P1/P0

Run 2

• No appreciable difference between design error / correct channels

Irradiation Results: Ring Modulator (XRM)

Run 3

- No degradation observed to 1 GRad
- Starts to break over 1.5 GRad
- Combine 1+2+3 runs
 - Optical performance holds up to 100 MRad
 - Electrical to 1GRad

MIAO HU

Irradiation Setups: Polarization Controller (Kr-85)

- Kr-85 Irradiation
 - Dose rate 7 rad/s
 - Polarization scrambler randomly rotates through all polarizations
 - Step VOA (variable optical attenuator) to adjust the input power
 - Optical powermeter to monitor the input power
 - IV sweep on thermal phase shifter

What we measure

- IV sweep on each PD (Photodiode)
- Input taps to measure the PSR performance, output taps to measure PS performance
- Track the key metrics over TID

Irradiation Results: Polarization Controller (Kr-85)

Ppi = Power needs to shift the phase 180°

MIAO HU

Irradiation Results: Polarization Controller (Kr-85)

Irradiation Results: Polarization Controller (Kr-85)

Summary and Next Steps

- links for HEP
 - High bandwidth (multiplexing)
 - Radiation hard
- - Ring modulators
 - Polarization controller
- Next
 - Higher dose for polarization controller
 - Dose rate effects
 - Ring modulator and polarization controller integration
 - RD53/Quad integration

• Silicon photonics is an excellent candidate for the development of the next generation optical

• Key components of SiPh devices have irradiated and the radiation-tolerance is excellent

