

Fair Universe HiggsML Uncertainty Challenge

Sample Submission

Introduction

This is a brief summary of the baseline method for the Higgs ML Uncertainty Challenge

The method is a simple ML Classifier with NLL for estimation

Basic Algorithm

- 1. Start
- 2. Divide data into train_set and holdout_set
- 3. Use *train_set* to Train the ML Classifier
- 4. Construct for S and B functions from *holdout_set*
- 5. Combine Define Negative Log Likelihood function as function of TES and mu
- 6. For Each pseudo experiment
 - a. Predict score for pseudo experiment
 - b. Use Minuit to find value of mu, sigma_mu and TES
 - c. Returns

```
mu
p16 = mu - sigma_mu
p84 = mu + sigma_mu
```

7. End

NN with L2 regularization using PyTorch

- PyTorch NN Classifier is Trained to distinguish Signal (Higgs) from Background (Z)
- 32 features,
- Architecture
 - 4 Hidden layers with 200 nodes
 - 1 Output node
 - Sigmoid Activation between layers
 - L2 Regularization during training
- Model return score between 0 (background) and 1(signal),

Histograms on Model Score

For each value of TES, The transformed holdout_set is evaluated by the model and histogram is build on the model score

Parameterisation of $S(\alpha)$

With the help of the *holdout_set* for we get values of S and B for each TES in each bin.

A polynomial function is used to fit them. This function is later used in the NLL formalism

Profile μ and α simultaneously

$$L(\mu, \alpha | \mathcal{D}) = \prod_{i=1}^{N_{\text{bins}}} \frac{(\mu S_i(\alpha) + B_i(\alpha))^{n_i} e^{-(\mu S_i(\alpha) + B_i(\alpha))}}{n_i!}$$
$$t_{\mu,\alpha} = -2 \log \left(L(\mu, \alpha \mid \mathcal{D}) \right)$$
$$= -2 \sum_{i=1}^{N_{\text{bins}}} n_i \log(\mu S_i(\alpha) + B_i(\alpha)) + (\mu S_i(\alpha) + B_i(\alpha))$$

L here is the likelihood estimator which depends on μ and α , thus the μ at which *L* is maximum or $t_{\mu,\alpha}$ is minimum is the predicted $\hat{\mu}$,

NLL ($t_{\mu,\alpha}$) curve and contour

We use *iminuit* package to find the minimum of $t_{\mu,\alpha}$ with high accuracy and the 1-sigma width, the 1-sigma width is width between points on the parabola for $t_{\mu,\alpha} = 1$

Fit on one pseudo Experiments

Signal Strength and Coverage - Pytorch

Coverage plot for NN pytorch (syst) [100 PX]

Other Remarks

- The model is designed to train for 100 epochs with a early stop
- It's recommended to be trained outside codabench.
- The model has a method to detect trained model, to avoid unnecessary re-training.
- Please comment it out or delete the trained model from the sample_code_submission, if you want to retrain.
- The starting kit has option to run on sample_data or public_data The sample_data is ~ 1% of the public_data so be cautious about it while training.
- All models should be serializable to be compatible with ingestion.

Parameterisation of B(alpha)

