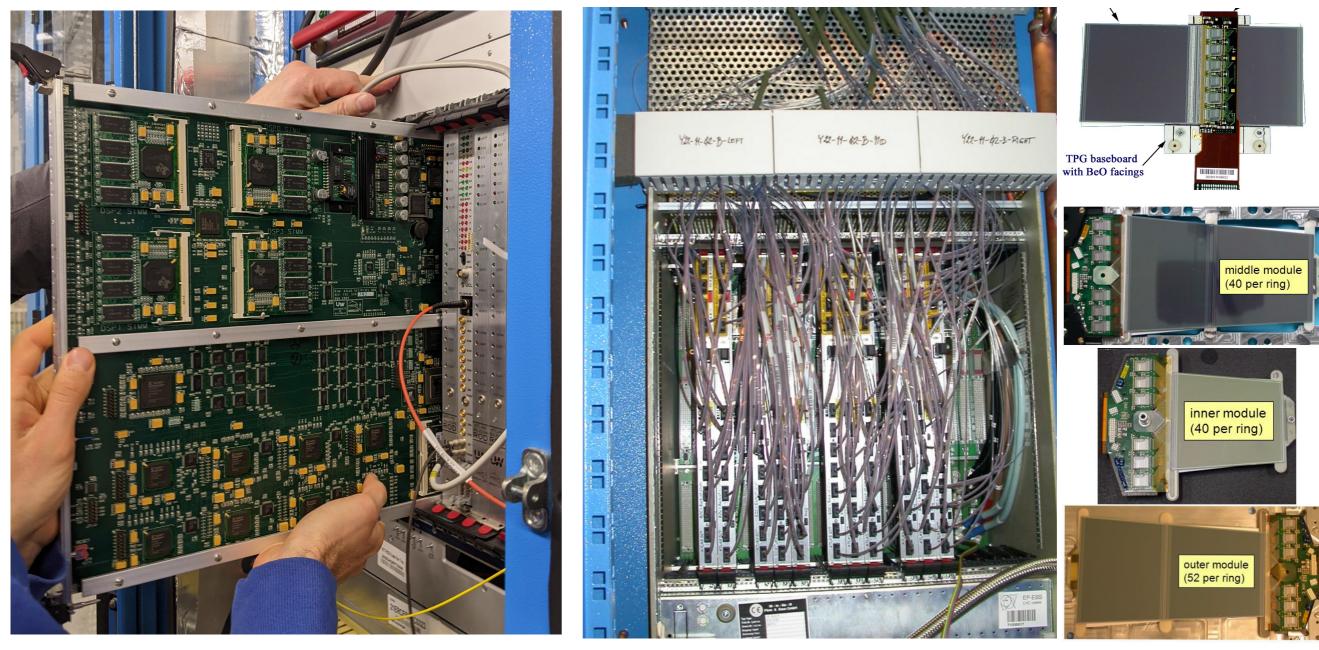

MLHE studies

SCT ROD Missing Link Header Error update

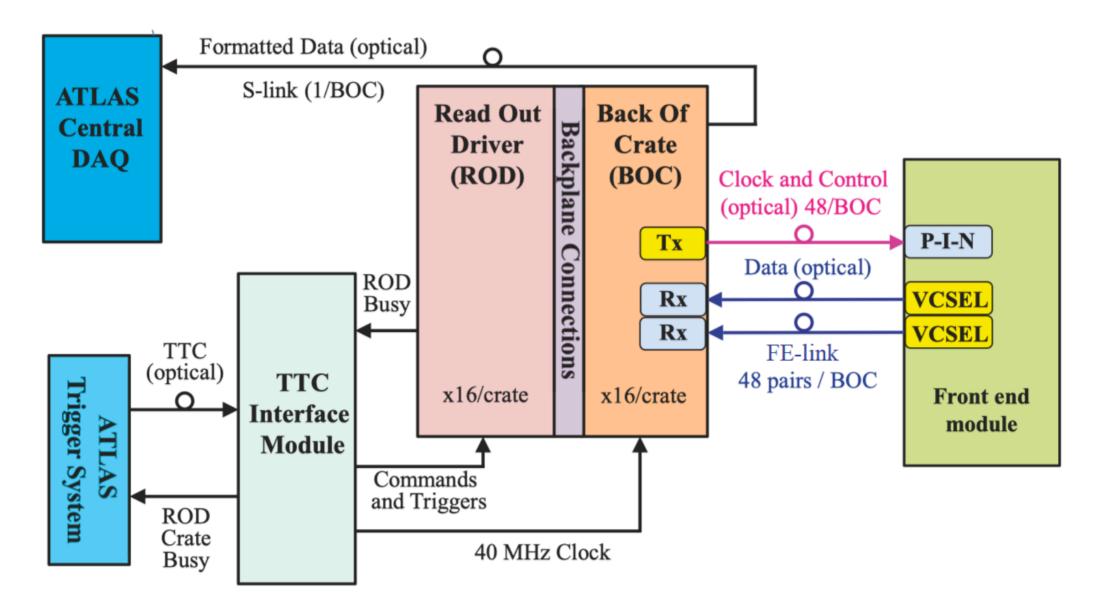
Rebecca Carney, <u>John Joseph</u>, *Bruce Gallop*, *Dave Robinson*, Koichi Nagai, Daiya Akiyama, Sahal Yacoob, Elisabeth Schopf, Alessandro Guida, and more



- Read-Out Driver (ROD), Timing Interface Module (TIM), Front-end (FE), Back Of Crate (BOC)
- ROD receives commands and triggers from TIM, sent to FE-links via BOC
- Upon L1, ROD reads out (via BOC) all FE-links with corresponding BCID.
- ROD then performs a variety of operations on data: adding trigger/link info, error detection, repacking into an "event fragment" and sending downstream to ROS (via BOC).

SCT DAQ

ROD (in hand), with TIM visible (orange fibre connection)


BOCs with fibre connections

SCT Barrel and EC modules, ABCD3T FE visible as 6 squares on hybrid

• Here's what some of these components look like in actuality (featuring SCT Run Coordinator deputy Alessandro Guida's hands on the left).

MLHE what is it?

- What comes out of the ROD?
 - ROS receives a formatted **event fragment** from ROD (contains L1ID, detector type, trigger type) high-level info about the event.
 - Within fragment header and trailer, there are 32-bit words with the following format: Header —> [Data x n] —> Trailer

- What comes out of the ROD?
 - Header words: contain L1ID, BCID info
 - 'Data' words: different formats/compression (condensed, expanded, super-condensed (used in Run 3)).
 - Data words contain FE ID info, cluster, and error info.
 - Trailer words contain error info.

Name	Bits [15:0] or [31:16]
Header	001plllbBBBBBBBB
Trailer	010zhvxxxxxxxx
1 hit condensed	1FFFFCCCCCCxfx0
2 hits condensed	1FFFFCCCCCCcsfx1
1st hit cluster expanded	1FFFFCCCCCC0DDD
1 hit cluster expanded	1xxxxxx0xxx1DDD
2 hit cluster expanded	1xxxxxx1DDD1DDD
Flagged error	000xxxxxFFFFEEE
Raw data	011nnnxxWWWWWWWW

```
Key:

B = BCID

C = cluster base address

D = 3 bit hit data

E = ABC error code

F = FE number

f = error in condensed mode data, 1st hit

h = header trailer limit error

L = L1ID
n = count of raw data bits + 1

p = preamble error

s = error in condensed mode data, 2nd hit

v = data overflow error

W = raw data

x = Don't care (ROD fills these with 0's)

z = trailer bit error

H = trailer bit error

Key:

n = count of raw data bits + 1

p = preamble error

s = error in condensed mode data, 1st hit

h = header trailer limit error

h = L1ID

N = count of raw data bits + 1

p = preamble error

N = raw data

x = Don't care (ROD fills these with 0's)

z = trailer bit error

N = raw data

N = raw data

N = raw data

N = count of raw data bits + 1

p = preamble error

N = raw data

N
```

MLHE what is it?

Missing Link-Header Error:

- ROS receives a formatted event fragment from ROD
- Data within fragment has the following format (much simplified, see later): Header —> Data —> Trailer
- Data word has: link number + cluster info + error info
- MLHE occurs when h->d->t order not obeyed and/or the link numbers are out of order. More details later.
- Maybe misplaced link data/header error is a more accurate name..

Name	Bits [15:0] or [31:16]
Header	001pLLLBBBBBBBBB
Trailer	010zhvxxxxxxxxx
1 hit condensed	1 <mark>FFFF</mark> CCCCCCCxfx0
2 hits condensed	1FFFFCCCCCCCsfx1
1st hit cluster expanded	1FFFFCCCCCC0DDD
1 hit cluster expanded	1xxxxxx0xxx1DDD
2 hit cluster expanded	1xxxxxx1DDD1DDD
Flagged error	000xxxxxFFFFEEE
Raw data	011nnnxxWWWWWWWW

Table 16: SCT Formatter Output, Bits [31:0]

• Why does this matter?

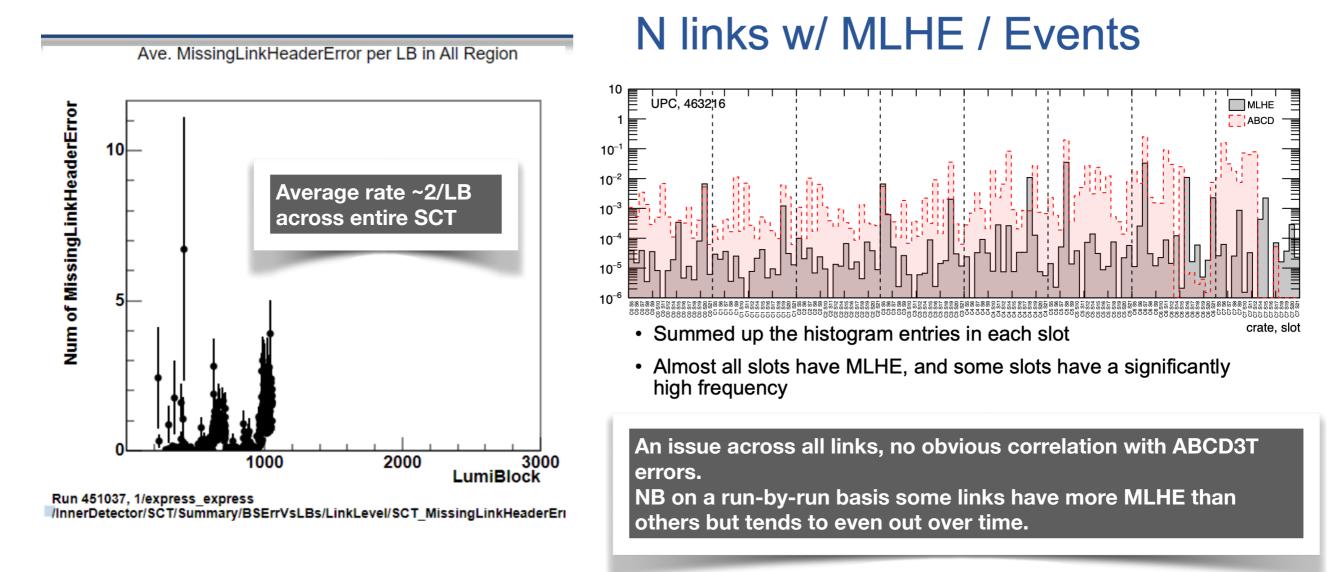
- Hit data being disconnected from the header means that you can no longer be sure which bc it came from, so that cluster data is essentially lost/incomplete.
- Could have knock-on effects in track reco

Key:

B = BCID	n	=	C
C = cluster base address	р	=	p
D = 3 bit hit data	s	=	e
E = ABC error code	v	=	da
F = FE number	W	=	ra
f = error in condensed mode data, 1st hit	х	=	Do
h = header trailer limit error	Z	=	t
L = L1ID			

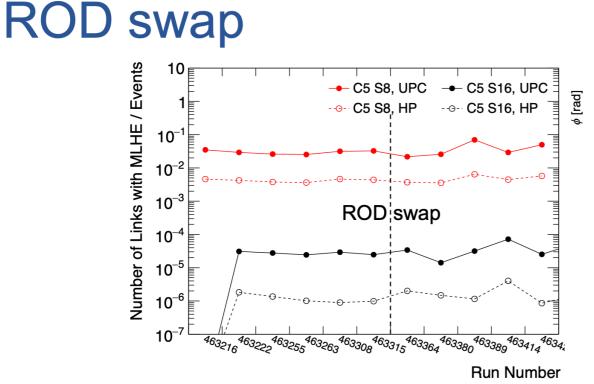
- n = count of raw data bits + 1
 p = preamble error
 s = error in condensed mode data, 2nd hit
 v = data overflow error
 W = raw data
 x = Don't care (ROD fills these with 0's)
- z = trailer bit error

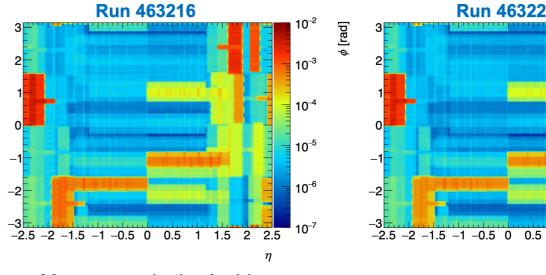
https://twiki.cern.ch/twiki/bin/view/Main/AtlasSiliconRodGroup, see ROD Manual (it's a bit out of date but gives a solid overview)


Observations

Some history likely incomplete

Please check out these great operations/DQ studies from Shigeki Hirose & Daiya
 Akiyama from last year, some of the results I summarize here.


https://indico.cern.ch/event/1284673/contributions/5398059/attachments/2644603/4577450/SCTWeekly_20230510.pdf https://indico.cern.ch/event/1350440/contributions/5685219/attachments/2768261/4822473/MLHE_rod_swap_20231207.pdf


Some history likely incomplete

 Please check out these great operations/DQ studies from Shigeki Hirose & Daiya **Akiyama** from last year, some of the results I summarize here.

https://indico.cern.ch/event/1284673/contributions/5398059/attachments/2644603/4577450/SCTWeekly 20230510.pdf https://indico.cern.ch/event/1350440/contributions/5685219/attachments/2768261/4822473/MLHE rod swap 20231207.pdf

Eta-phi distribution

· Many errors in the A-side

- https://atlasop.cern.ch/elisa/display/528704
- The number of errors did not change in each slot, the problem is not in ROD

This is not a ROD hardware issue: rate is matched to links, physically swapping out cards doesn't change rate.

There is some A-side dependency, seen in the last heavy-ion runs. Unclear why.

Run 463222

 10^{-2}

10⁻³

10-4

10⁻⁵

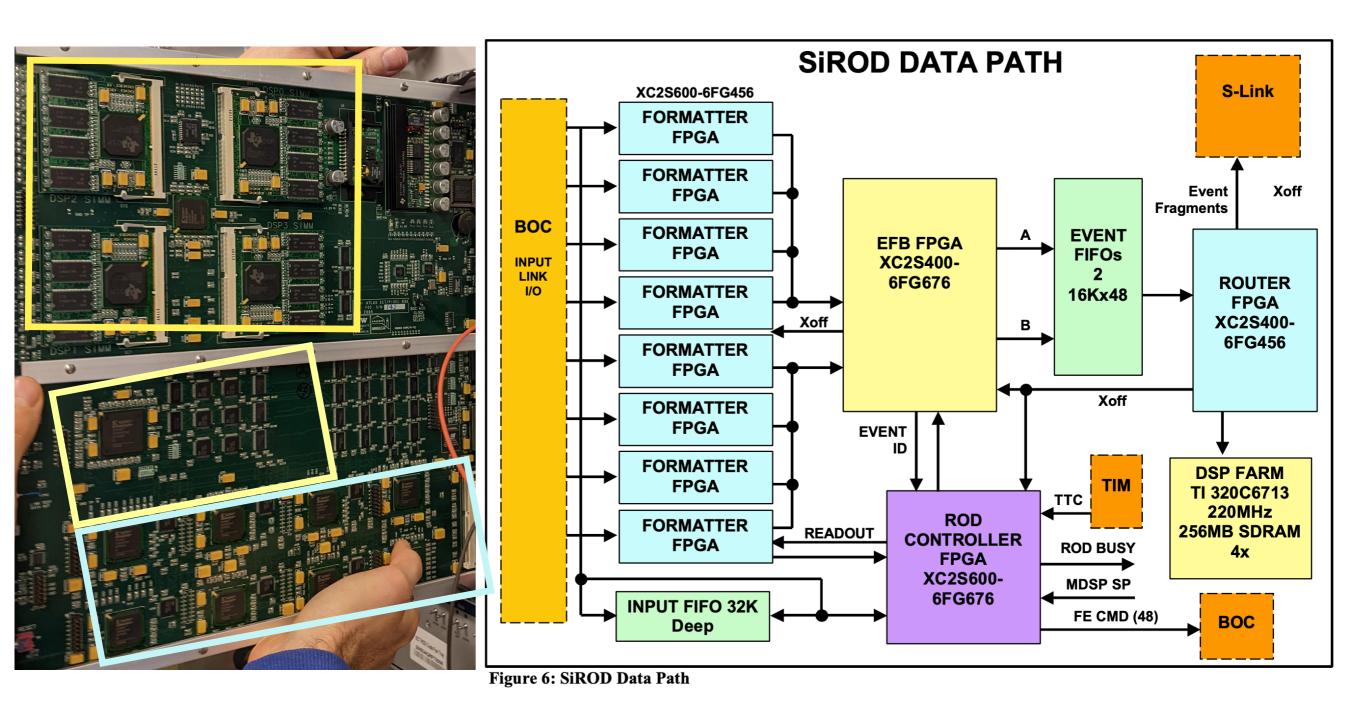
10⁻⁶

 10^{-7}

1.5 2 2.5

1

Some conclusions


- This is an infrequent but consistent issue.
- It is not caused by problematic ROD hardware, but perhaps by how ROD firmware is handling problematic module data or how the DAQ stream is working at high data-rate.
- There is some A-side dependency but no problematic modules.

To proceed, a little more info about the ROD...

ROD data path

ROD data path

- One of the functions of the ROD is to reformat link data into an event fragment.
- Within the ROD this is achieved using logic distributed across multiple FPGAs.
- The logic can be traced across data or control paths, focus here on the data path.

ABCD-3T format

• ABCD3T FE output contains trigger info, chip address, hit info, hit address.

Table 12: SCT Data Packet Format

Header	DT	L1ID	BC ID	S		S		Trailer
<11101>	<0>	<tttt></tttt>	<bbbb bbbb=""></bbbb>	< 1 >	<data block=""></data>	<1>	<data block="" n=""></data>	<1000 0000 0000 0000>

Legend: L1ID >> $\mathbf{t} = \text{L1ID}$ value from FE Module BCID >> $\mathbf{b} = \text{BCID}$ value from FE Module

Table 13: SCT Data Block (Hit in Data)

Leader	Chip Address	Hit Channel Address		First Hit		Next Chan Hit		Nth Chan Hit		N+1th Chan Hit
<01>	<aaaa></aaaa>	<ccc cccc=""></ccc>	<1>	<ddd></ddd>	<1>	<ddd></ddd>	<1>	 <ddd></ddd>	<1>	<ddd></ddd>

Hit Pattern <ddd>:

- 1. Detector Alignment = <1xx> or <x1x> or <xx1>
- 2. Level = $\langle x | x \rangle$
- 3. Edge = <01x>
- 4. Test = $\langle xxx \rangle$

ROD formatter

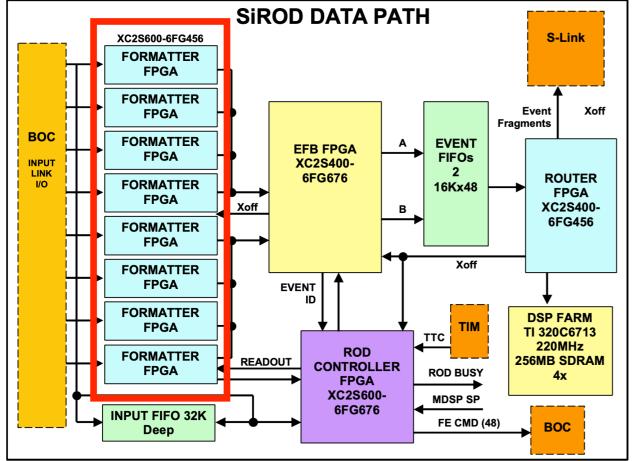


Figure 6: SiROD Data Path

Name	Bits [15:0] or [31:16]
Header	001pLLLBBBBBBBBB
Trailer	010zhvxxxxxxxx
1 hit condensed	1 <mark>FFFF</mark> CCCCCCxfx0
2 hits condensed	1FFFFCCCCCCcsfx1
1st hit cluster expanded	1FFFFCCCCCC0DDD
1 hit cluster expanded	1xxxxxx0xxx1DDD
2 hit cluster expanded	1xxxxxx1DDD1DDD
Flagged error	000xxxxxFFFFEEE
Raw data	011nnnxxWWWWWWWW

- ABCD3T FE output contains trigger info, chip address, hit info, hit address.
- Formatter reorganizes info into clusters with a trigger ID in the header and error flags [32 bits] + [6 bits] of metadata used by EFB.
- Additionally derandomizes link stream, handles module errors.
- This also contains the expanded/ condensed/super-condensed logic packing.

Bits	Definition	Notes
[31:0]	Event Data	
[35:32]	Link Number	(Present for all 32 bit words)
[36]	Time Out Error Bit	(Present for all 32 bit words)
[37]	Condensed Mode Bit	(Present for all 32 bit words)

ROD data path

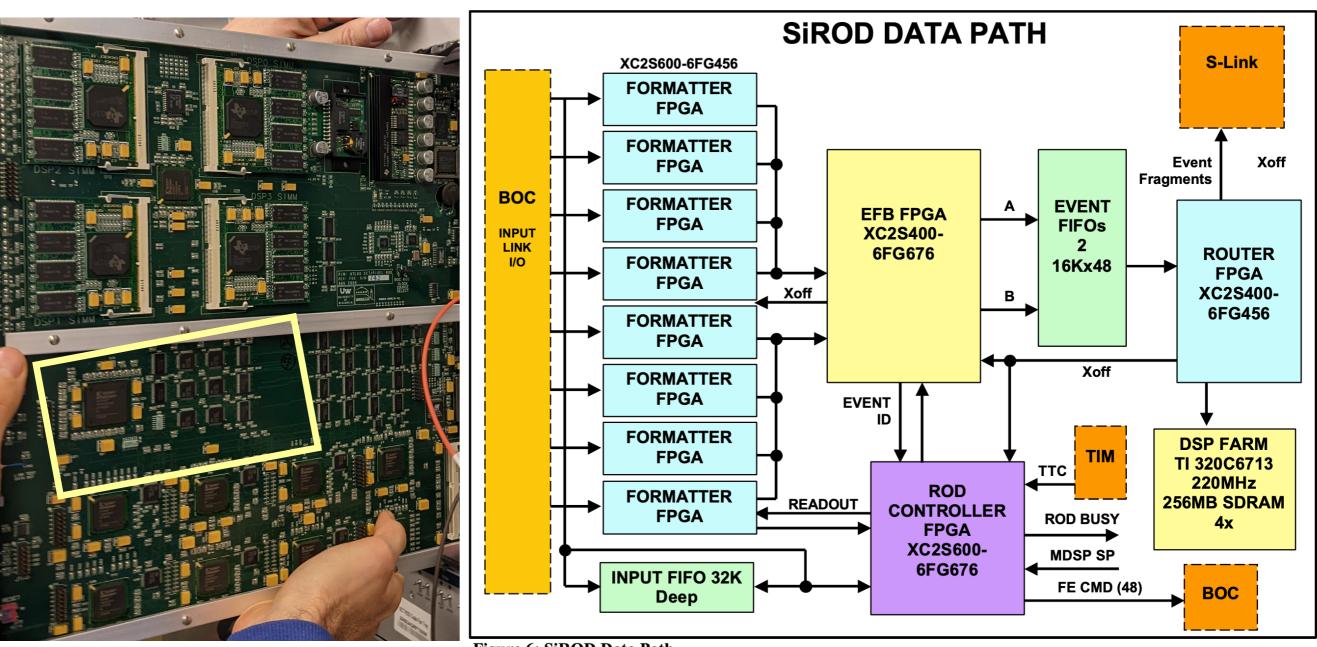


Figure 6: SiROD Data Path

Now to EFB

ROD EFB

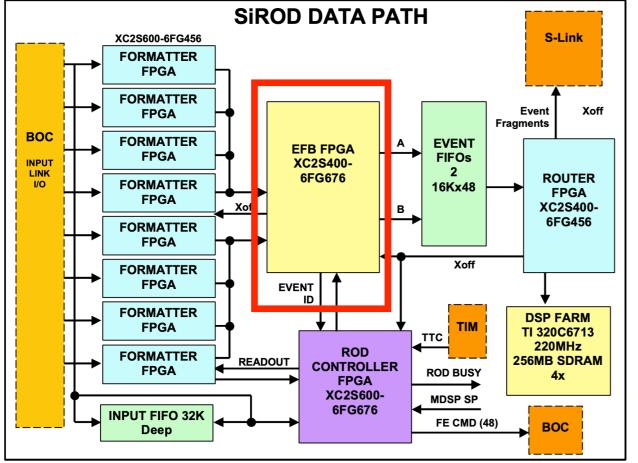


Figure 6: SiROD Data Path

	Table 23: Event Header Format at the Output of the EFB			
Word	Contents	Comment		
0	0xB0FTTTTT	Beginning of fragment marker/ T = Router Trap Type Data (Removed by Router)		
1	0xEE1234EE	Start of header		
2	0x9	Header size		
3	0x30100000	Format Version Number (Ver 3.1)		
4	0x001XNNNN Pixel	Source Identifier		
4	0x002XNNNN SCT	N = Module ID, X = LS Nibble of Sub-detector ID		
5	0xTTSSSSSS Run Number: T = Run Type → 0x00 > Physics 0x01 > Calibration 0x02 > Cosmics 0x0F > Test S = Sequence within Run Type			
6	0x <mark>EE</mark> LLLLL	Extended Level 1 ID: E = ECR ID, L = L1ID		
7	0x0000BBB	Bunch Counter ID		
8	0x000000AA	ATLAS Level 1 Trigger Type		
9	0x00RR000T	Detector Event Type R = ROD or T = TIM		

• Event Fragment Builder (EFB) receives data from each formatter.

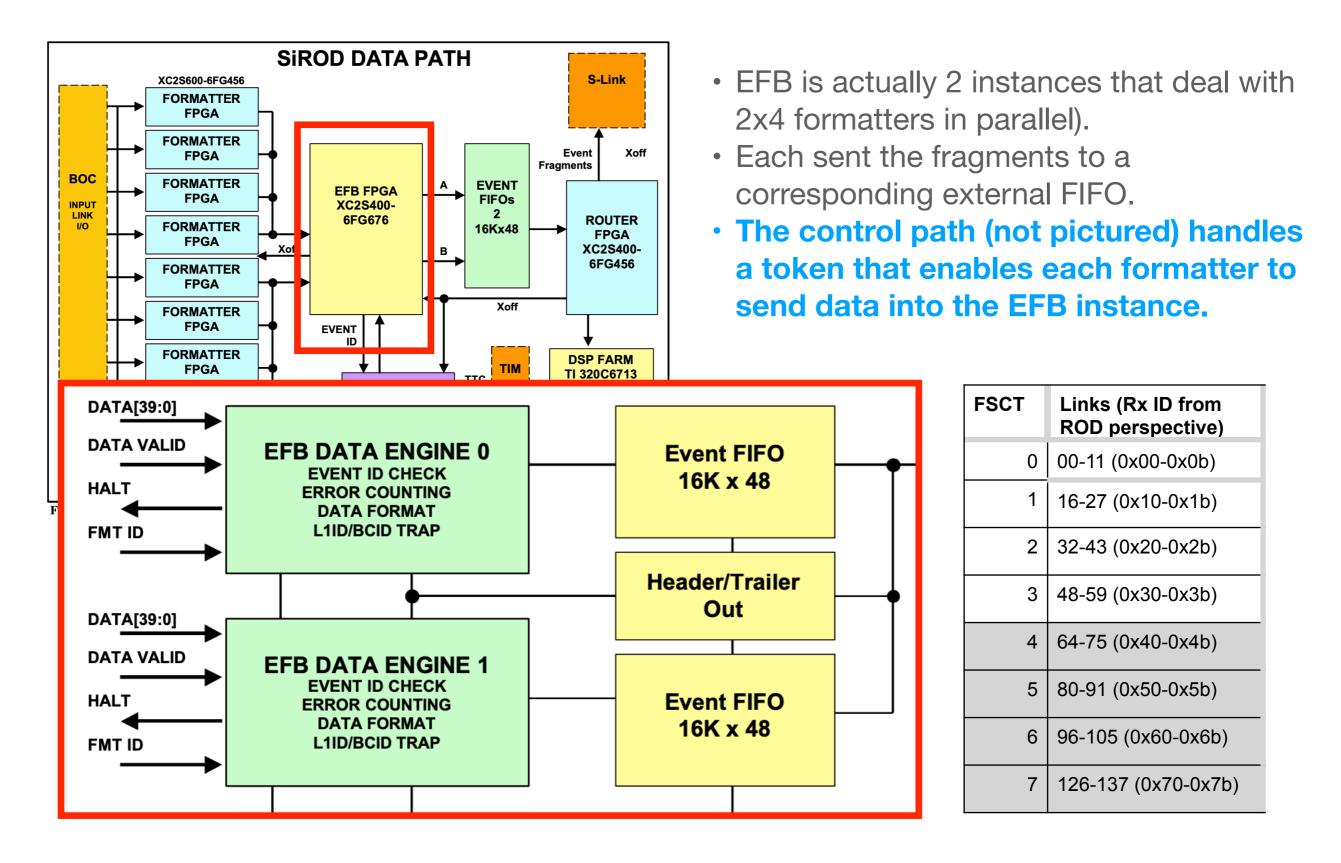

 EFB performs bc/L1D checks & checks for non-sequential, non-monotonic FE #, interprets errors (and raises flags), repacks data into Event Fragment format (see below) + does some zero supression. Send to event FIFO.

Table 25: EFB Output Link Data Format - SCT

Bits	Definition	Notes
[31:0]	Event Data	
[38:32]	Link Number	Present for in header word only
[39]	Time Out Error Bit	Present for in header word only
[40]	Condensed Mode Bit	Present for in header word only
[41]	L1 ID Error Bit	Present for in header word only
[42]	BC ID Error Bit	Present for in header word only

EFB input

ROD EFB

ROD router

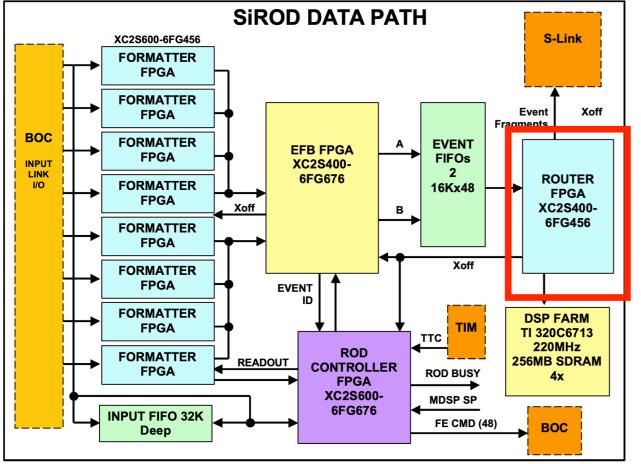


Figure 6: SiROD Data Path

2.3.3.1 S-Link Event Header and Trailer Output Format

Table 29: Event Header Format at the Output of the Router

Word	Contents	Comment		
0	0xB0F00000 + UCTRL	Beginning of fragment marker		
1	0xEE1234EE	Start of header		
2	0x9	Header size		
3	0x30100000	Format Version Number (Ver 3.1)		
4	0x001XMMMM Pixel	Source Identifier		
4	0x002XMMMM SCT	M = Module ID, X = LS Nibble of Sub-detector ID		
5	0xTTSSSSSS	Run Number: T = Run Type → 0x00 > Physics 0x01 > Calibration 0x02 > Cosmics 0x0F > Test S = Sequence within Run Type		
6	0xEELLLLLL	Extended Level 1 ID: E = ECR ID, L = L1ID		
7	0x00000BBB	Bunch Counter ID		
8	0x00000AA	ATLAS Level 1 Trigger Type		
9	0x00RR000T	Detector Event Type R = ROD or T = TIM		

This is the same as the EFB

- In terms of data output, the router does not modify the event fragment: it just puts the non-event data info from the EFB into the header.
- We can also "trap" data at the output of the router in the so-called DSP farms. This is useful to debug what is coming out of the router!

Table 27: Router Link Header Output – SCT Format Bits[31:0]

Name	Bits [15:0] or [31:16] - 0	Output to the S-Link	EFB Output
Header	001ptlbKdMMMMMMM		001pLLLBBBBBBBBB
	Key:		
	b = BCID error	B = BCID	
	l = L1 error	L = L1ID	
	M = link number	p = Preamble Error	
	t = time out error	x = don't care	
	d = link masked by DSP		

28th Feb 2024

MLHE clues

Out of order header

62210 (0xa†10217b		Table 30: Even	at Trailer Format at the Output of the Router
62211	0xc390c4d0	Word	Contents	Comment
62212	0xc780cc10	0	See Table 31	Status 1: Flagged Data Errors
62213	0xd280e860	1	See Table 32	Status 2: Count of errors in Event Fragment (C) Static Error Flags and ROL Status (S)
	0xece04000	2	0x2	Number of status words
		3	0x0000Ndata 0x1	C <mark>ount of data words</mark> Status block position: 0/1 = before/after data
62215	Trailer found!!!	5	0xE0F00000	End of fragment marker
62216	0×00000000			
62217	Status word found,	skip	ping ahead to P	ROB marker.
62218	0xdd1234dd			
62219	ROB marker			
62220	0xee1234ee			
62221	====== ROD mar	ker =		
62222	0xa9304000		This word is	completely out of place
62223	ERROR: this data sl	hould	have been a he	eader!
62224	ERROR: no header be	efore	hit data!	
62225	0x212080c0			
62226	0xade02121			
62227	0xc0d02122			
62228	0x82908610			
	0x8ab09730			

In this example there were no other errors for the remainder of the event. Is it possible this word is from a different event?

Counted words (trailer/event/header type, 32-bit full words) and compared to words counted by event FIFO in ROD (recorded in event trailer). Number of words is **always correct, even in events with errors like this.** So we're not losing/gaining words and it seems unlikely it's from another event. However, need to review router code to check where the word counter is implemented, the #words may be a red herring?

Out of order links

183432 0x85302138					
<mark>183433 Lin</mark> k: 56					
183434 0x81808b00					
183435 0x2139cba0	FSCT	Links	Previous link	Next link	Instances
183436 Link: 57	1001			NGAL IIIK	mətanceə
183437 0x213a83e0	0	00-11 (0x00-0x0b)	123 (0x7b)	64 (0x40)	12%
<mark>183438 Link: 58</mark> 183439 0x 217b e4a0	1	$46.07 (0 \times 10.0 \times 16)$			
183440 Link: 123		16-27 (0x10-0x1b)	123 (0x7b)	96 (0x60)	6%
183440 LINK: 125 183441 0x214080e0	2	32-43 (0x20-0x2b)	122 (0)(72)	64 (0x40)	120/
183442 Link: 64	2		122 (0x7a)	64 (0x40)	13%
183443 ERROR: Link headers out of order?	3	48-59 (0x30-0x3b)	59 (0x3b)	32 (0x20)	44%
oldLink# = 123, new link# = 64	4	64-75 (0x40-0x4b)		- (,	
183444 0x21428490			59 (0x3b)	33 (0x21)	12%
183445 Link: 66	5	80-91 (0x50-0x5b)	50 (0x2a)	22 (0,21)	60/
183446 0x8ac097b0	6	96-105 (0x60-0x6b)	58 (0x3a)	33 (0x21)	6%
183447 0x2143c050	7	400 407 (0x70 0x7h)	57 (0x39)	32 (0x20)	6%
<mark>183448 Link: 67</mark>	/	126-137 (0x70-0x7b)			
183449 0xc3802144	Total		Total		32
183450 Link: 68					
183451 0x84c08650					

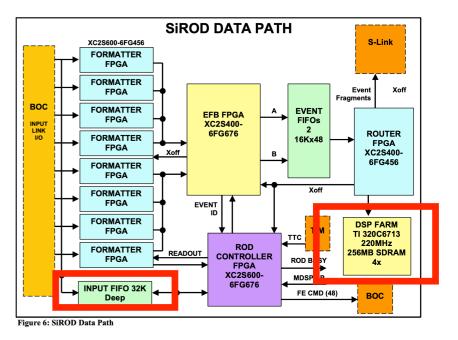
- A specific set of links seem to get moved around in the event are they even from the same event (can we trust the word count from previous slide)?
- The links in question are highlighted in yellow above. What is interesting is that these always occur at the EFB instance boundaries!

Out of order links

183432 0x85302138					
183433 Lin <u>k: 56</u>					
<mark>183434</mark> 0x81808b00					
183435 0x2139cba0	FSCT	Links	Previous link	Next link	Instances
183436 Link: 57	FSCI	LIIKS	Flevious IIIIk	NEXT IIIK	mstances
183437 0x213a83e0	0	00-11 (0x00-0x0b)	123 (0x7b)	64 (0x40)	12%
183438 Link: 58					1270
183439 0x217be4a0	1	16-27 (0x10-0x1b)	123 (0x7b)	96 (0x60)	6%
183440 Link: 123	2	32-43 (0x20-0x2b)			
183441 0x214080e0		, , , , , , , , , , , , , , , , , , ,	122 (0x7a)	64 (0x40)	13%
183442 Link: 64	3	48-59 (0x30-0x3b)	59 (0x3b)	32 (0x20)	44%
<pre>183443 ERROR: Link headers out of order? oldLink# = 123, new link# = 64</pre>	4	64-75 (0x40-0x4b)	J9 (0X3D)	32 (0x20)	44 /0
$\frac{183444}{183444} = 123, \text{ new clink#} = 64$	· ·		59 (0x3b)	33 (0x21)	12%
183445 Link: 66	5	80-91 (0x50-0x5b)	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	
183446 0x8ac097b0	6	96-105 (0x60-0x6b)	58 (0x3a)	33 (0x21)	6%
183447 0x2143c050	0	90-103 (0x00-0x00)			
183448 Link: 67	7	126-137 (0x70-0x7b)	57 (0x39)	32 (0x20)	6%
183449 0xc3802144	Total		Total		32
183450 Link: 68	Total		Total		02
183451 0x84c08650					

- The Event Fragment Builder is actually two instantiations: each one works in parallel, processing 4 formatters at a time. The first one processing FSCT {0,3}, the second {4,7}.
- There is a token that controls which formatter is currently being read out.
- The fact that the MLHE out of order links predominantly happen at the EFB instance boundaries hints towards an issue at that point.

Results summary


Error message in file	Word type expected	Recieved	Count
ERROR: Data expected, got ROB marker instead	Data	ROB marker	4%
ERROR: this should have been a header, got ROD marker instead!	Header	ROD marker	0
ERROR: this should have been hit data, got ROD marker instead!	Data	ROD marker	0
ERROR: this should have been a header, got trailer instead!	Header	Trailer	0
ERROR: no header before this trailer!	Header	Trailer	0
ERROR: no rod marker before this trailer!	ROD marker	Trailer	0
ERROR: this data should have been a header!	Header	Data	27%
ERROR: no header before hit data!	Header	Data	27%
ERROR: hit data before rod marker!	ROD marker	Data	0
ERROR: this should have been hit data, instead it is a header!	Data	Header	4%
ERROR: header before rod marker!	ROD marker	Header	0
ERROR: Link headers out of order?	New link > old link	Old link > new link	40%

- Most frequent error is receiving data before a header, explicitly: receiving data when a header was expected.
- The link headers are also sometimes appearing out of order.
- The errors above are not mutually exclusive.
- More on these points over the next few slides.

Debug challenges

Tools available to us

- The ROD has a small input FIFO that can be used to trap formatter data. This could allow us to capture problematic data streams that cause MLHE - but it is very shallow: would need to know exactly which stream to capture.
- However, the event fragment ordering is checked only in the ROS output monitor (off-ROD). We would need a deep buffer to store events to account for latency of any feedback and we don't have (a) a deep buffer nor (b) a mechanism to provide feedback!
- The DSP farm can trap data coming out of the router but that's only useful if we think there is an issue at the S-link (we don't).

Other challenges

- The rate at which this error occurs is very low (2 MLHE/min at peak across the entire SCT detector), so it is very improbable that capturing random link streams will result in capturing one responsible for a MLHE.
- We have so far been unable to replicate this issue in (a) simulation or (b) standalone test stands at Berkeley & SR1 using generated 'bad/difficult' data NOR random link streams captured during high-PU events in Run 3.

So what now?

SCT as test bench

Is it just rate?

Is it rate or something special about collision data?

- So far, simulating high-rate events and sending them to the test-stand RODs does not cause MLHE.
- So is it something special about collision data (hit pattern/module occupancy?) or just the high occupancy in Run 3?
- During M2 week (end of Feb) we: lowered the module thresholds, set to anyHit mode, and lowered the sensor bias (i.e. increased noise, opened the modules up to accept the noise as hits) to try and emulate a high-occupant. <u>https://atlasop.cern.ch/elisa/display/534017</u>
- We succeeded in observing MLHE!
- Conclusion: this is purely rate-related, not something special about having beams.
- Result: We now have a test environment (!!) to try and narrow down the cause of the error!

Time start/end	Test	Threshold	Crates/Rods affected	MLHE rate	Notes
10:27:30/10:4 7:30	All 0.7	0.7	All	39 in 20 min = 2/min	This is about the average during runtime. MonitoringSc alingFactor = 10%
10:59/11:19	All 0.5	0.5	All	51 in 20 min = 2.55/min	MonitoringScal ingFactor = 10%
11:56/13:32	All	0.7	All	181 in 96 min = 2/min	MSF = 1 (100%) No obvious change in rate from increasing the monitoring scaling factor.

Managed to get rate equivalent to that seen in Run 3
Cannot get rate higher (played with HV bias, module

thresholds) - this is still a rare occurrence! (Which means we can't try trapping data on a single ROD - still improbable)

Where is this happening in the ROD?

- This is either occurring in the Formatter or EFB.
- Currently we're exploring the EFB since the MLHE links always occur at the EFB instance boundary.
- The EFB contains some logic to perform zero suppression that 'repacks' 16-bit half-words. Maybe that has a small bug?
- Or maybe this is happening further downstream?

FSCT	Links				
0	00-11 (0x00-0x0b)				
1	16-27 (0x10-0x1b)				
2	32-43 (0x20-0x2b)				
3	48-59 (0x30-0x3b)				
4	64-75 (0x40-0x4b)				
5	80-91 (0x50-0x5b)				
6	96-105 (0x60-0x6b)				
7	126-137 (0x70-0x7b)				
Total					

Plan for week:

- When SCT not needed for M2 activities with ATLAS: put it into the noisy test-mode. It is great that we
 have a mode to test things in!
- Try flashing different debug firmware and seeing what happens: e.g. if I remove the packing logic does the MLHE rate or content change?
- Another thing we're going to explore is what the fill-level of the EFB output FIFOs is and if it correlates with MLHE.

One issue: varying baselines

Date	Time ↓	Run	MLHE	Run duration [min]	MLHE rate [/min]	Firmware	Notes
28/02	15:23	0	57	27	2.1 +/- 0.3	Current release	STANDBY, 0.7fC
04/03	8:58	0	140	31	4.5 +/- 0.4	Current release	STANDBY, 0.7fC
	17:12	7	87	33	2.6 +/- 0.3	Current release	STANDBY, 0.7fC
05/03	8:35	0	79	30	2.6 +/- 0.3	Current release	STANDBY, 0.7fC

Date	Time ↓	Run	MLHE	Run duration [min]	MLHE rate [/min]	Firmware	Notes
28/02	17:34	1	41	26	1.6 +/- 0.2	Current release (rebuilt)	STANDBY, 0.7fC
01/03	15:21	0	61	28	2.2 +/- 0.3	Current release (rebuilt)	STANDBY, 0.7fC
04/03	10:00	1	121	30	4.0 +/- 0.4	Current release (rebuilt)	STANDBY, 0.7fC
	11:56	3	137	43	3.2 +/- 0.3	Current release (rebuilt)	STANDBY, 0.7fC
	14:13	5	66	47	1.4 +/- 0.2	Current release (rebuilt)	STANDBY, 0.7fC
05/03	10:20	2	103	31	3.3 +/- 0.3	Current release (rebuilt)	STANDBY, 0.7fC
	11:11	3	106	30	3.5 +/- 0.3	Current release (rebuilt)	STANDBY, 0.7fC
	12:01	4	403	71	5.7 +/- 0.3	Current release (rebuilt)	STANDBY, 0.7fC

• 1.5-2.4

- 2.5-3.4
- 3.5-4.4
- 4.5-10
- 10+
- Uncertainties are just std error on the mean.
- Baseline rates have varied in time.
- Have not found any obvious correlations by looking at module temp, cooling exhaust temp, cooling power. But not a true systematic study done.
- Once I noticed the baselines shifting I tried to sandwich each debug measurement with a baseline measurement. But still hard to draw conclusions..

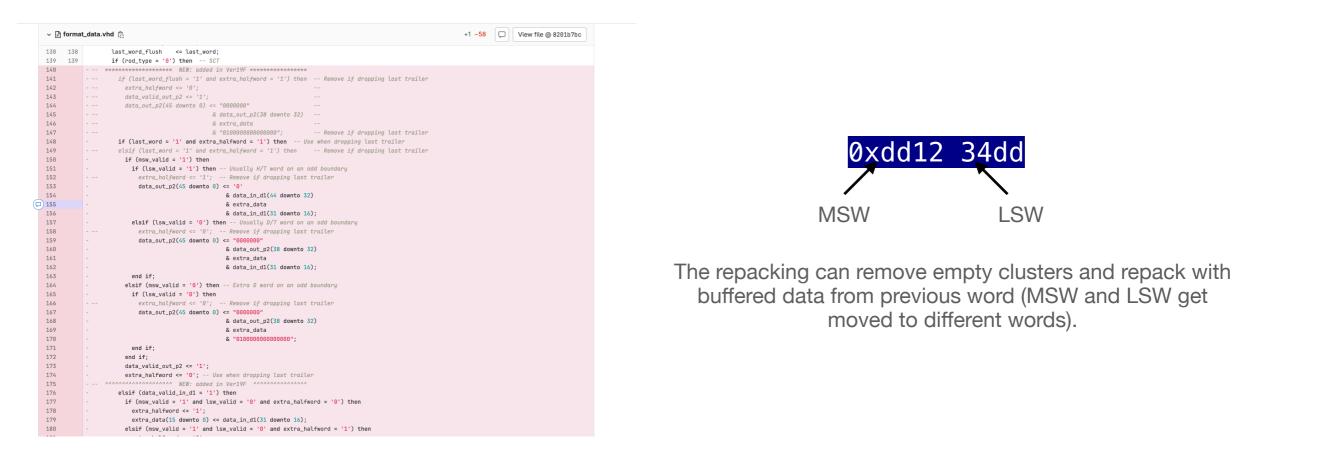
All tests

• Summary of MLHE rates over tests done in the past week

Date	Time	Run	MLHE	Run duration [min]	MLHE rate [/min]	Firmware	Notes	Current
28/02	15:23	0	57	27	2.1	Current release	STANDBY, 0.7fC	Current
	17:34	1	41	26	1.6	Current release (rebuilt)	STANDBY, 0.7fC	(rebuilt)
29/02	10:04	0	145	54	2.7	Current release	SUPSAFE, 0.7 fC	 Halved ev_afill
01/03	15:21	0	61	28	2.2	Current release (rebuilt)	STANDBY, 0.7fC	counter
	16:23	1	433	25	17.3	EFB repack removed	STANDBY, 0.7fC	• EFB repack
04/03	8:58	0	140	31	4.5	Current release	STANDBY, 0.7fC	removedOther
	10:00	1	121	30	4.0	Current release (rebuilt)	STANDBY, 0.7fC	Other
	10:54	2	119	38	3.1	Reduced ev_afull_counter in	STANDBY, 0.7fC	
	11:56	3	137	43	3.2	Current release (rebuilt)	STANDBY, 0.7fC	
	13:01	4	135	50	2.7	Halved ev_afull_counter	STANDBY, 0.7fC	
	14:13	5	66	47	1.4	Current release (rebuilt)	STANDBY, 0.7fC	
	15:50	6	168	61	2.8	Halved ev_afull_counter	STANDBY, 0.7fC	
	17:12	7	87	33	2.6	Current release	STANDBY, 0.7fC	
05/03	8:35	0	79	30	2.6	Current release	STANDBY, 0.7fC	
	9:27	1	122	32	3.8	Halved ev_afull_counter	STANDBY, 0.7fC	
	10:20	2	103	31	3.3	Current release (rebuilt)	STANDBY, 0.7fC	
	11:11	3	106	30	3.5	Current release (rebuilt)	STANDBY, 0.7fC	
	12:01	4	403	71	5.7	Current release (rebuilt)	STANDBY, 0.7fC	
	13:45	5	493	39	12.6	EFB repack removed	STANDBY, 0.7fC	
	14:42	6	30	13	2.3	Halved fifoRAMb afull thresh	STANDBY, 0.7fC	

rcarney@lbl.gov

29


All tests (coloured by rate)

• Summary of MLHE rates over tests done in the past week

Date	Time	Run	MLHE	Run duration [min]	MLHE rate [/min]	Firmware	Notes
28/02	15:23	0	57	27	2.1	Current release	STANDBY, 0.7fC
	17:34	1	41	26	1.6	Current release (rebuilt)	STANDBY, 0.7fC
29/02	10:04	0	145	54	2.7	Current release	SUPSAFE, 0.7 fC
01/03	15:21	0	61	28	2.2	Current release (rebuilt)	STANDBY, 0.7fC
	16:23	1	433	25	17.3	EFB repack removed	STANDBY, 0.7fC
04/03	8:58	0	140	31	4.5	Current release	STANDBY, 0.7fC
	10:00	1	121	30	4.0	Current release (rebuilt)	STANDBY, 0.7fC
	10:54	2	119	38	3.1	Reduced ev_afull_counter in	STANDBY, 0.7fC
	11:56	3	137	43	3.2	Current release (rebuilt)	STANDBY, 0.7fC
	13:01	4	135	50	2.7	Halved ev_afull_counter	STANDBY, 0.7fC
	14:13	5	66	47	1.4	Current release (rebuilt)	STANDBY, 0.7fC
	15:50	6	168	61	2.8	Halved ev_afull_counter	STANDBY, 0.7fC
	17:12	7	87	33	2.6	Current release	STANDBY, 0.7fC
05/03	8:35	0	79	30	2.6	Current release	STANDBY, 0.7fC
	9:27	1	122	32	3.8	Halved ev_afull_counter	STANDBY, 0.7fC
	10:20	2	103	31	3.3	Current release (rebuilt)	STANDBY, 0.7fC
	11:11	3	106	30	3.5	Current release (rebuilt)	STANDBY, 0.7fC
	12:01	4	403	71	5.7	Current release (rebuilt)	STANDBY, 0.7fC
	13:45	5	493	39	12.6	EFB repack removed	STANDBY, 0.7fC
	14:42	6	30	13	2.3	Halved fifoRAMb afull thresh	STANDBY, 0.7fC

1.5-2.4 2.5-3.4 3.5-4.4 4.5-10

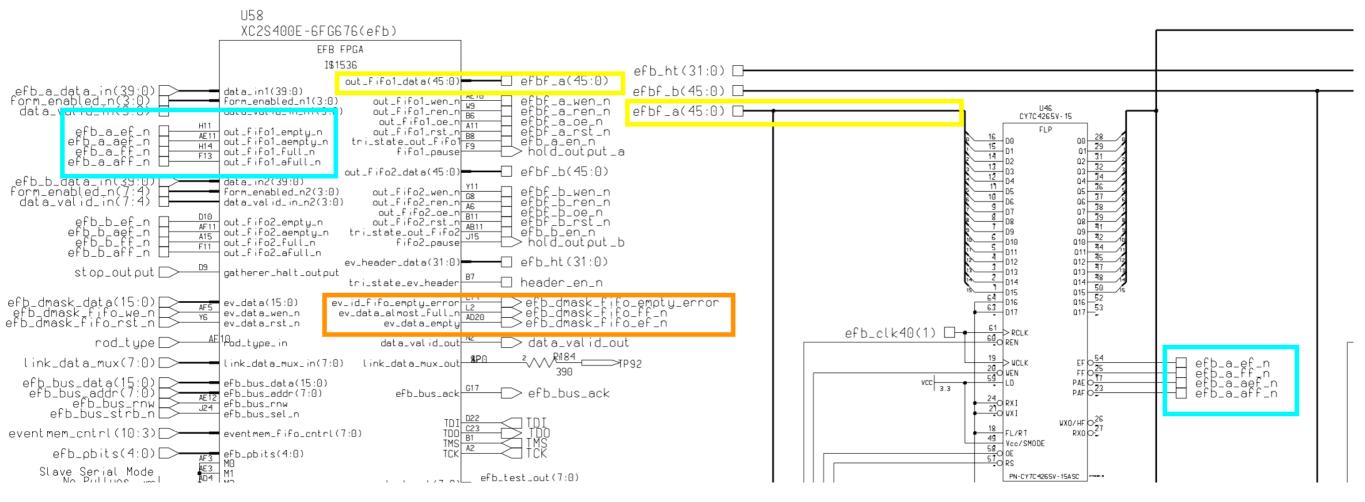
Some conclusions

Date	Time	Ru n	MLHE	Run duration [min]	MLHE rate [/ min]	Firmware	Notes
01/03	16:23	1	433	25	17.3 +/- 0.8	EFB repack removed	STANDBY, 0.7fC
05/03	13:45	5	493	39	12.6 +/- 0.6	EFB repack removed	STANDBY, 0.7fC

• Two main tests run so far.

31

- In first, the EFB repacking (zero suppression) was removed, thereby increasing the event size: <u>https://gitlab.cern.ch/atlas-sct-rod-daq/rod_efb/-/commit/</u> <u>8201b7bc1b24383c71226fbcc14bf6d084de818f</u>
- This increased the MLHE rate significantly, even considering the changing base rate.
- What does this tell us? That the event repacking in the EFB is not the source of the MLHE and that event size increases the rate.


Some conclusions?

~ =	ev_dat	a_decode.vhd [c]	173 174 175 176 177	+- wen + 256x16bit registeren eventheader bits + R	ren + + 16*# event_headerma d fifo1 + *# R + + *#	
 180 181 182 183 184 185	 180 181 <u>182</u>	<pre>@@ -180,9 +180,13 @@ begin ev_data_empty <= '1'; elsif (clk'event AND clk = '1') then</pre>	178 179 180 181 182 183 184 185 186 186 186 186 188 188 188 188 188 189 189 189 189 189 189 180 190			 7 Description: 8 ROD Dual Gatherer 9 SCT Version 10 Reads Event FIFO data from the external FIFO and writes t 11 BCID and 4 bit L1 ID data into the Event ID FIFOs of each 12 The full L1, BC ID, and Trig type info are sent to the lo 13 generates the event fragment header/trailer. 14
	183 184 185 186 187 188 189	<pre>+if (fifocount_out > "1110000000") then 56 events at 16 w/evt = 896 words, + Test 1: +if (fifocount_out > "1101000000") then 832 words/almost full` + Test 2: + if (fifocount_out > "0111000000") then 448 words/almost full`</pre>	195 196 197 198 280 281 282 284 284 284 285 284 285 285 286 286 287 286 287 286 287	<pre>/ readout_control_ / count_control_ / state_machine</pre>		 15 A full event of data must be read out over 17 words from 16 external FIFO since there are so many bits of data. 17 The 4K FIFO can buffer the data from 240 Events 18 19 word 0 : L1 ID[15:0] ev data sh
186 187	190 191		211 + 212 213 214	jincr decr +> header_count ++	 event_header_count(4 downto 0)^M -M -M	

Date	Time	Run	MLHE	Run duration [min]	MLHE rate [/ min]	Firmware	Notes
04/03	13:01	4	135	50	2.7 +/- 0.2	Halved ev_afull_counter	STANDBY, 0.7fC
	15:50	6	168	61	2.8 +/- 0.2	Halved ev_afull_counter	STANDBY, 0.7fC
05/03	9:27	1	122	32	3.8 +/- 0.3	Halved ev_afull_counter	STANDBY, 0.7fC

- The second test halves the FIFO almost-full threshold in the event header mask FSM (not that the repacking was added back in for this test. Tests are mutually exclusive): <u>https://gitlab.cern.ch/atlas-sct-rod-daq/</u> <u>rod_efb/-/commit/54ef31a57f5f7d4bd11e3f118d270b9163454295</u>
- Essentially it delays the write state earlier that it normally would in the Dynamic Mask Read Out State Machine, i.e. writes to the FIFO from the EFB are buffered for longer.
- The threshold was halved from d'896 to d'448
- Hard to draw conclusions from these runs. In all cases they are sandwiched by baselines that changed. However, it is clear that any results of this change are not as significant as with repacking test.
- In each case we could maybe say that this firmware change did not change the rate since it is consistent (within uncertainty) with baseline? But really not clear.

Re-reading output?

- From the data sheet here: https://www.digikey.com/en/products/detail/infineon-technologies/CY7C4265V-15ASC/2270518 the last value read from the FIFO remains on the FIFO output pins even when the FIFO is empty. It's kind of throwaway line in the datasheet: "An empty FIFO maintains the data of the last valid read on its Q 0–17 outputs even after additional reads occur."
- Another avenue to explore could be: see if that last value in the FIFO is being sampled near the start of the next event before the FIFO is ready to be read? And then we'd see double words, which I don't think we ever do (do we check for that??).
- Playing with the is_almost_empty (not actual name) threshold should change the rate in the case that this is actually the cause.
- Hard to simulate because different components!!

Thanks for the warm support of SCT operations & experts team!

- Firmware in git
 - The SCT ROD has four FPGA's: <u>Formatter</u>, <u>Event Fragment Builder</u>, <u>Router</u>, and <u>Controller</u>
 - Each has its own repo of vhdl source code linked above and here: <u>https://gitlab.cern.ch/atlas-sct-rod-daq</u>
 - Main will always contain the current release source code. Branches are for debug or features. Releases are tagged in main.
- How-to-build document: https://gitlab.cern.ch/atlas-sct-rod-daq/rod_docs
 - Specifies how to install legacy Xilinx toolkit and build each project.
 - Let me know if you have any suggested edits!