

Physics with the Electron-Ion Collider

Nicole Apadula

Research Scientist, NSD

March 15, 2024

EIC science program

- How does nucleon mass & spin emerge from partons?
- How are partons inside the nucleon distributed in momentum & position?
- How do partons interact with a nuclear medium?
- o How are nuclear bindings & hadronic states formed from partons → hadronization?
- $_{\circ}$ Gluon density \rightarrow saturation

World-wide EIC interest

Grown from 400 to ~1400 collaborators

ePIC Collaboration 160+ institutions 24 countries 500+ participants

The Machine

CD-1 granted in June 2021

e⁻: 5 - 18 GeV

The ePIC Detector

 Asymmetric barrel with electron and hadron endcaps

Compact detector

> Tracking, PID, EMCal, HCal

 Streaming readout electronics model

ePIC Detector: Tracking requirements

- $_{\circ}$ Wide kinematic coverage
- $_{\circ}$ Excellent momentum resolution
- High-precision primary vertex determination
- $_{\circ}$ Secondary vertex separation

- Spatial resolution
 - + $\leq 5~\mu m$ for tracking layers & discs
 - ~3 μ m for vertex layers
- Material budget
 - $\leq 0.1\% X/X_0$ for vertex layers
 - \leq 0.3% X/X₀ for discs
- Power consumption
 - < 40 mW/cm^2

Goal: Minimize material, maximize acceptance \rightarrow Silicon

Structural Shel Half Barrels BEAMPIPE

Cylindrical

Nicole Apadula, NSD

- 65 nm technology
- > **Stitched** wafer-scale (up to ~28 x 10 cm)
- > Ultra-thin $(20 40 \mu m)$
- > Bent

• ALICE ITS3

Silicon Sensor Technology: MAPS

on Genesis: 20 micron thick wafe

ALICE ITS3 LOI

Half-Laver

Silicon Sensor Technology: MAPS

$_{\rm O}$ ALICE ITS3

- > Monolithic Active Pixel Sensors (MAPS)
 - 65 nm technology
- > Stitched wafer-scale (up to ~28 x 10 cm)
- > Ultra-thin (20 40 μm)
- > Bent
- $_{\circ}$ Low material budget (~0.05% X₀)

ePIC SVT

2.5 m

LBNL led design/geometry

• Inner Barrel (IB) > Wafer-scale sensors • Length: ~ 26 cm > Radii: 36 - 120 mm • Outer Barrel (OB) > Outer radius: 42 cm **5 discs** > Length: 54 & 84 cm per side • **Discs** ≻ Radii: ~20 – 40 cm

3 IB layers (bent) 2 OB layers

~8.5 m² of Silicon

(Small subset of) Work at LBNL

 $_{\circ}$ Disc design

- Corrugated carbon fiber, sensor layout, air cooling
- $_{\circ}$ Beam-pipe bake-out

ANSYS simulations

LW/cm²

 $\sim 40 \text{ mW/cm}^2$

PULTRUDED SQUARE TUBES TO SEAL EDGES Summary

- The EIC/ePIC will allow us to image nucleon/nuclear 3D structure, search for gluon saturation, explore proton spin structure, & hadronization
- Substantial work has been achieved towards the EIC & ePIC
 Detector design, simulations, physics studies
- Still a lot of work to be done, but on track for first beams in the 2030s
 LBNL has a lead role in the SVT → exciting time for high-energy nuclear physics!