Looking for dark matter with nuclear decays

Ryan Gibbons

290E Seminar

March 13, 2024

Use "priors" to focus in

- WIMPs: thermal freeze-out, hierarchy problem/SUSY
- QCD axion: strong CP problem, "misalignment" production
- Flip this around: ultra-sensitive detectors exist \rightarrow look for anomalous signal
- Example with LZ experiment
 - Primary goal: WIMP search
 - Many other dark matter searches: dark photons, ultraheavy DM, ...

Focusing in further

- Particle-like dark matter (WIMPs etc.)
- Direct-detection avenue
- Signal is a nuclear decay
- Example models:
 - Metastable isomer decay
 - Charged-current capture (1905.12635, 2301.11893)
 - Neutron-like capture (2005.04240, 2306.11349)

Metastable isomer decay

Nuclear isomers

- Excited nuclei usually decay t_{1/2} < O(ns)
 γ-ray or internal conversion
- Isomers: metastable excited states
 - Suppressed by large ang. mom. transfer
 - Example: ^{131m}Xe

Some good reference articles: Phys. Scr. 95 (2020) 044004 Rep. Prog. Phys. 79 (2016) 076301

Selected long-lived isomers

• ^{178m}Hf

- 2.46 MeV, J^{π} = 16⁺, t_{1/2} = 31 years
- Aside: energy storage/weapons controversy

• ^{180m}Ta

- -77.2 keV, J^{π} = 9⁻, decay never observed! 0.0120% natural abundance
- Unstable to weak decays, ground state $t_{1/2} = 8.1$ hours
- Aside: important "astromer" (e.g., 2010.15238)

Metastable Nuclear Isomers as Dark Matter Accelerators

Maxim Pospelov,^{1,2} Surjeet Rajendran,³ and Harikrishnan Ramani^{4,5,*}

1907.00011

- Dark matter inelastically scatters with isomer inducing isomer decay
- Event signatures
 - Look for anomalous γ -ray signals

Isomers as dark matter targets

- Look for re-scatter of DM particle
- What DM models?
 - Inelastic dark matter
 - Strongly interacting dark matter

$\chi + N^* \to \chi + N$

STELLA Lab at Gran Sasso (LNGS)

Day job: material screening lab for experiments at LNGS

Photo credit: STELLA

MAJORANA DEMONSTRATOR at SURF

Main goal: 0vββ search, repurposed for isomer study

Photo credit: R. Massarczyk, TAUP 2023 slides

Germanium detector basics

- Ge is semiconductor similar to Si
- Semiconductor = fantastic energy resolution
 - $-W \sim 3 \text{ eV}, f \sim 0.1$
 - More directly measuring quanta (i.e., no PMTs)
- Suitable for γ-rays (compared to Si)
 - Large depletion (active) region
 - Higher atomic number
- Need to operate cold (in LN ~77 K)
 - Ge has smaller band gap than Si
- HPGe and Ge(Li) types

^{178m}Hf signature

1. Start in metastable state

Figure from 2306.04442

Region where most search windows are

FIG. 2. The observed spectrum from the 178m Hf sample for a live time of 974.2 s. The inset shows the spectrum surrounding 1330 keV. A dark matter-induced γ with this energy proved to be the most sensitive test.

Figure from 2306.04442

^{180m}Ta signature

Similar idea to ^{178m}Hf

Measure/set limit on *total* decay rate Compare to SM predictions

Potential for theory ambiguity, no "smoking gun" signal

Figure from 2305.17238 (not shown: α decay branch)

Summary of current measurements

No observation of DM or ^{180m}Ta decay, only limits

• 178m**Hf**

- Only one measurement: 2023 Los Alamos (2306.04442)
- Related search looking for excitations from ground state (2012.08339)
- IMO unlikely there will be any more sensitive measurements
- ^{180m}Ta
 - 2019 Berkeley-led analysis of existing data as Gran Sasso (1911.07865)
 - 2023 measurement at Gran Sasso (2305.17238)
 - Best limit, 2023 measurement from MAJORANA (2306.01965)

	EC	β ⁻	¥	IC
Previous Limits	> 1.6 x 10 ¹⁸	> 1.1 x 10 ¹⁸	> 4.5 x 10 ¹⁴	> 4.5 x 10 ¹⁴
MJD - 2023	> 1.3 x 10 ¹⁹ **	> 1.5 x 10 ^{19 **}	> 6.0 x 10 ¹⁷	> 2.9 x 10 ¹⁷
Theory	10 ²³	10 ²⁰	10 ³¹	10 ¹⁸

Figure: R. Massarczyk, TAUP 2023 slides

Future of ^{180m}Ta measurements

MAJORANA limit

MAJORANA is continuing to take data, potential for sensitivity with SM prediction

Figure taken and updated from 2305.17238

Figure: R. Massarczyk, TAUP 2023 slides

Inelastic dark matter

- Two dark matter states, χ_1 , χ_2 with small mass gap O(100 keV)
 - Analogous to proton/neutron gap
- Hypothesis: elastic scattering suppressed, inelastic possible
- Originally conceived to reconcile DAMA and CDMS...
- In detector scatter, go from $\chi_1 \rightarrow \chi_2$
- Mass-splitting sensitivity in traditional detector (LZ) limited by center-of-mass kinetic energy
- Isomers give better sensitivity to higher mass-splitting

Inelastic dark matter

For $M_{\chi} = 1$ TeV

MAJORANA limits with ^{180m}Ta 2306.01965

Summary

- Low-background detectors can explore numerous DM models
- Metastable isomers target models traditional WIMP detectors cannot
- Current limits with ^{178m}Hf, ^{180m}Ta, measurements of latter ongoing