Primordial Non-Gaussianity

Austin Joyce
Kavli Institute for
Cosmological Physics
University of Chicago

Fundamental Physics From Future Spectroscopic Surveys, LBNL, May 2024

Cosmology is a study of correlations

Distribution of objects is not random

We learn about the universe by tracing these correlations through time

We can follow correlations all the way back to the reheating surface where the universe thermalized

What do we know about $P[\zeta]$?

Close to Gaussian

$$\frac{\langle \zeta^3 \rangle}{\langle \zeta^2 \rangle^{3/2}} \ll 1$$

Nearly scale-invariant

Interpretation

Hot big bang

fluctuations on this surface look acausal

Inflation

The hot big bang cannot be the beginning of time

Hot big bang

Inflation

The hot big bang cannot be the beginning of time

Inflation explains how these perturbations could have arisen causally

All we can do is infer the properties of this early phase

What is Inflation?

Heisenberg: no clock is perfect, fluctuations are a Nambu-Goldstone mode (symmetry breaking)

A Time-Dependent Oscillator

Small fluctuations get **stretched** by the expansion of space

Eventually they freeze and get imprinted at the end of inflation

Time → Scale

Fluctuations on different scales freeze at different times during inflation

Microphysics

The information we currently have about inflation is **kinematic**, follows from **approximate symmetries** of inflation

Understanding microphysics requires probing interactions

Microphysics

Interactions lead to higher-point correlations

We can probe these higher-point correlations by measuring **non-Gaussianities**

Non-Gaussianity

Summarize information with **moments** of probability distribution

$$\langle \zeta(x)\zeta(y)\zeta(z)\rangle = \int \mathcal{D}\zeta \,\zeta(x)\zeta(y)\zeta(z) \,P[\zeta]$$

In Fourier space parameterize as

Shape

$$\langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \rangle = (2\pi)^3 \delta(\vec{k}_1 + \vec{k}_2 + \vec{k}_3) \frac{18}{5} f_{\text{NL}} A_s^2 \frac{\mathcal{S}(k_1, k_2, k_3)}{(k_1 k_2 k_3)^2}$$

Amplitude

Shapes of non-Gaussianity

Different kinds of interactions give rise to correlations that are strongest in particular configurations

Related to **sound speed** in simplest models (like a fluid)

What is the nature of inflation?

Goal: Understand the underlying microphysics driving the inflationary universe

How do we organize our thinking about this question?

Focus on the **energy scales** in the problem

Energy scales

What is the energy scale of inflation?

Tensor power spectrum is a direct probe of the energy scale

Symmetry-breaking scale

Spectrum of scalar perturbations fixes ratio between Hubble and symmetry-breaking scale

Microphysics of inflation?

Field(s) rolling in a potential?

Something stringy?

An exotic phase of matter?

Strong-coupling scale

Non-Gaussianity non-detections already put some constraints on strong-coupling scale

$$f_{\rm NL}^{\rm eq.} \sim 10^4 \left(\frac{H}{\Lambda}\right)^2$$

Is inflation UV completed at weak coupling?

Extracting from data needs exquisite modeling/new ideas (opportunity for theory)

Equilateral non-Gaussianity is a probe of the self-coupling of the inflaton and its strong-coupling scale

Interesting threshold: $f_{
m NL}^{
m eq} \sim 1$

Is the inflaton alone?

The UV completion of inflation could involve **new states** near

the Hubble scale

Benchmark $f_{\rm NL}^{\rm loc.} \sim 1$

A soft theorem

In single-field inflation, non-Gaussianity vanishes in the squeezed limit

Detection is therefore suggestive of **additional particles** that contribute to density perturbations

^{*}Of order $\sim (n_s-1)k_L^2/k_S^2$ in the squeezed limit

A Cosmological Collider

Particles lighter than the inflationary expansion scale can be produced—an **opportunity** to probe high energies

Leave imprints in the late-time correlations

Signatures of new particles

 $f_{
m NL}^{
m loc}$ is a coarse measurement of additional particles, but there are more detailed signatures in shape

Oscillatory feature appears because of massive particle exchange, phase is related to mass, allows for spectroscopy

Cabass, Philcox, Ivanov, Akitsu, Chen, Zaldarriaga 2404.01894 Sohn, Wang, Fergusson, Shellard 2404.07203

Requires new calculations and theory development

Local non-Gaussianity is a probe of additional states beyond the inflaton

Rough benchmark: $f_{\rm NL}^{\rm loc} \sim 1$

Initial conditions

We believe inflationary perturbations are quantum

Minimal assumption: started in adiabatic vacuum, regular in folded limit

Folded non-Gaussianity is therefore a probe of initial conditions

Beyond correlation functions

Correlation functions capture features of the distribution near the **peak** well

Moment expansion misses information in the tails

Challenge for both theory and data

Targets

- Are there other energy scales important during inflation? (Features)
- What is the strong coupling scale of inflation? (equilateral nG)

Threshold: $f_{\rm NL}^{\rm eq.} \sim 1$ (slow-roll/non-slow roll)

 Are other degrees of freedom besides the inflation important during inflation? (local nG)

Benchmark: $f_{\rm NL}^{\rm loc.} \sim 1$ (single-field/multi-field)

 What are the mass and spin of new particles if present during inflation? (particle nG templates)