Fundamental Physics from Future Spectroscopic Surveys Lawrence Berkeley National Laboratory, 6 May 2024

OPPORTUNITIES FOR DARK MATTER SEARCHES IN COSMOLOGY

Kimberly Boddy University of Texas at Austin

Cosmic History

Kimberly Boddy

Deviations from CDM due to DM properties/interactions:

(1) Early Universe: impact initial conditions for structure formation

(2) Late Universe: impact halo formation and evolution

2

Early Universe: (1)impact initial conditions for structure formation

Dark Matter Scattering

 $\sigma_{MT}(v) = \int (1 - \cos \theta) \frac{d\sigma}{d\Omega} \ d\Omega = \sigma_0 v^n$

Heavy mediator

f in early Universe: e⁻, p, He

Light mediator

 \bullet n = -2 (electric dipole)

+
$$n = -4$$
 (Coulomb)

see KB, Gluscevic (PRD 2018) and Gluscevic, KB (PRL 2018) for application of nonrelativistic EFT operator formalism

Modify Boltzmann Equations

$$\begin{split} \dot{\delta}_b &= -\theta_b - \frac{\dot{h}}{2}, \ \dot{\delta}_{\chi} = -\theta_{\chi} - \frac{\dot{h}}{2} \\ \dot{\theta}_b &= -\frac{\dot{a}}{a}\theta_b + c_b^2 k^2 \delta_b + R_{\gamma}(\theta_{\gamma} - \theta_b) + \frac{\rho_{\chi}}{\rho_b} R_{\chi}(\theta_{\chi} - \theta_b) \\ \dot{\theta}_{\chi} &= -\frac{\dot{a}}{a}\theta_{\chi} + c_{\chi}^2 k^2 \delta_{\chi} + R_{\chi}(\theta_b - \theta_{\chi}) \end{split}$$

Momentum-transfer rate

$$R_{\chi,f} \sim an_f \left(\frac{\sigma_0}{m_\chi + m_f}\right) \left(\frac{T_b}{m_f} + \frac{T_\chi}{m_\chi}\right)^{(n+1)/2}$$

Heat-transfer rate

$$R'_{\chi,f} = \frac{m_{\chi}}{m_{\chi} + m_f} R_{\chi,f}$$

Modified CLASS: <u>https://github.com/kboddy/class_public/tree/dmeff</u> see also CLASS v3.2 and Becker, Hooper, Kahlhoefer, Lesgourgues, Schöneberg (JCAP 2021)

 $\sigma_{MT}(v) = \sigma_0 v''$

 $\dot{T}_{b} + 2\frac{\dot{a}}{a}T_{b} = 2\frac{\mu_{b}}{m_{e}}R_{\gamma}(T_{\gamma} - T_{b}) + 2\frac{\mu_{b}}{m_{\chi}}R'_{\chi}(T_{\chi} - T_{b})$ $\dot{T}_{\chi} + 2\frac{\dot{a}}{a}T_{\chi} = 2R'_{\chi}(T_{b} - T_{\chi})$

Assume Maxwell-Boltzmann distribution for dark matter

see Ali-Haïmoud (PRD 2019); Gandhi, Ali-Haïmoud (PRD 2022) for Fokker-Planck analysis

Dvorkin+ (PRD 2014), KB+ (PRD 2018)

Effects of Dark Matter Scattering

CMB Constraints from Planck 2018

Including Effects from BBN

If DM mass ~ MeV, freeze-out occurs during BBN

 DM annihilation transfers energy and entropy into visible sector

$$\rho_{\rm rad} = \rho_{\gamma} \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\rm eff} \right]$$

+ Light DM modifies $p \leftrightarrow n$ conversion freezeout via impact on Hubble

An, KB, Gluscevic (2402.14223)

Matter Power Spectrum

KB and Gluscevic (PRD 2018)

Kimberly Boddy

9

Suppression of (Linear) Matter Power Spectrum

Nadler, Gluscevic, KB, Wechsler (ApJL 2019)

Maamari, Gluscevic, KB, Nadler, Wechsler (ApJL 2021)

Small-Scale Modifications

Snowmass 2021 Cosmic Frontier: Dark Matter Physics from Halo Measurements Bechtol, Birrer, Cyr-Racine, Schutz+ (2203.07354)

Kimberly Boddy

11

Milky Way Satellites

Classic dwarfs SDSS-identified dwarfs

Suppression for Various Models

DES Collaboration, Nadler, incl. KB (PRL 2021)

DES Collaboration, Nadler, incl. KB (PRL 2021)

Nguyen, Sarnaaik, KB, Nadler, Gluscevic (PRD 2021)

Constraints: Warm and Fuzzy Dark Matter

DES Collaboration, Nadler, incl. KB (PRL 2021)

Late Universe: (2)impact halo formation and evolution

Small-Scale Structure Puzzles

Dwarf Spheroidals

Small-scale structure puzzles arise in various systems: missing satellites, core-cusp, too-big-to-fail, diversity

Low-Surface Brightness (LSB)

Clusters

Small-Scale Structure Puzzles

baryonic effects and SIDM

Model halo as

- self-gravitating fluid
- with spherical symmetry
- In hydrostatic equilibrium

Self-interactions create low-density cores, but...

Negative specific heat causes runaway collapse of halo core

Outmezguine, KB, Gad-Nasr, Kaplinghat, Sagunski (MNRAS 2023)

Central Density Evolution

(even for velocity-dependent models) *Outmezguine, KB, Gad-Nasr, Kaplinghat, Sagunski (MNRAS 2023) Gad-Nasr, KB, Kaplinghat, Outmezguine, Sagunski (2312.09296)*

 $t_0^{-1} \sim (\sigma/m) r_s \rho_s^{3/2}$

Nishikawa, KB, Kaplinghat (PRD 2020)

Accelerate Core Collapse

- Collapsed cores produce high central densities: bug or feature?
- Various ways of accelerating collapse:
 - Tidal stripping of subhalos

Nishikawa, KB, Kaplinghat (PRD 2020)

Dark matter dissipation

Essig, Yu, Zhong, McDermott (PRL 2019)

e.g., Sameie, Yu, Sales, Vogelsberger, Zavala (PRL 2020)

Observe some systems with larger central densities than expected from CDM

21

Particle Physics of SIDM

Need to model halo formation and evolution with velocity-dependent SIDM

Kaplinghat, Tulin, Yu (PRL 2016)

Impact on Halo Morphology

Snowmass 2021 Cosmic Frontier: Dark Matter Physics from Halo Measurements Bechtol, Birrer, Cyr-Racine, Schutz+ (2203.07354)

Kimberly Boddy

23

Early and late Universe! (3)

Composite Dark Matter: Impact Structure at Early and Late Times

- + Light mediators contribute to $N_{\rm eff}$

Muñoz, Dvorkin, Cyr-Racine (PRD 2020)

Short, Bernal, KB, Gluscevic, Verde (2203.16524) see also Tashiro, Kadota, Silk (PRD 2014); Muñoz, Kovetz, Ali-Haïmoud (PRD 2015); Kovetz, Poulin, Gluscevic, KB, Barkana, Kamionkowski (PRD 2018); Driskell, Nadler, Mirocha, Benson, KB, Morton, Lashner, An, Gluscevic (PRD 2022)

Complementarity

Snowmass 2021 Theory Frontier: Astrophysical and Cosmological Probes of Dark Matter KB, Lisanti, McDermott, Rodd, Weniger+ (2203.06380)

