LSS Signals from Solutions to the Higgs & Neutrino Hierarchy Problems

Yuhsin Tsai University of Notre Dame

Fundamental Physics from Future Spectroscopic Surveys LBNL 5/7/2024

Dark sector cosmology is crucial for several BSM scenarios that particle people have been thinking about

Twin Higgs Model: Chacko, Goh, Harnik (2005)

Addressing the Higgs hierarchy problem up to ~ 10 TeV scale

Mirror particles are invisible => relax LHC constraints But... how do we examine it?

In turns of dark sector cosmology, (more) well predicted dark particle masses/interactions as a function of ($\Delta N_{\rm eff}$, $\frac{\hat{v}}{v} = \frac{VEV_{\rm mirror}}{VEV_{\rm SM}}$, $\hat{r} = \frac{\rho_{\rm mirror-b}}{\rho_{\rm total\,DM}}$)

Existing cosmo bounds

Bansal, Kim, Kolda, Low, YT (2021)

YT, Luo, Yuan, Fan (2023)

Dark Acoustic Oscillations (DAO) in DM perturbation

Cir-Racine, Sigurdson (2012) Cir-Racine, Putter, Raccanelli, Sigurdson (2012) Bansal, Kim, Kolda, Low, YT (2021)

Yuhsin Tsai: ytsai3@nd.edu

8

Dark Acoustic Oscillations (DAO) in P(k)

Ideally, measure the various features fix all the model parameters & provide a consistency check of the Twin Higgs scenario

Mirror sector parameters: $\hat{r} = 0.1$, $\hat{v}/v = 3$, $\Delta \hat{N} = 0.3$ All other parameters assumed to be the best fit value of ΛCDM .

Realistically,

non-linear corrections suppress the oscillations

Matter power spectrum ratio

Zu, Zhang, Chen, Wang, Tsai, YT, Luo, Yuan, Fan (2023)

2-point correlation function of cosmic shear

Gedget3 DM-only vs HMCode

Higher redshift measurement may allow us to determine the features

Gedget-3 DM-only vs HMCode 1.4 Simulation 1.4 Simulation **ACDM ACDM** 1.2 BP1 1.2 BP1 HMCode HMCode Halofit Halofit P(k)/P_{ACDM}(k) 9.0 9.0 P(k)/P_{ACDM}(k) 9.0 80 11 0.4 0.4 z=20.2 z=00.2 10° 100 10^{1} 10- 10^{1} 10^{-1} k [h/Mpc] k [h/Mpc]

Matter power spectrum ratio

Zu, Zhang, Chen, Wang, Tsai, YT, Luo, Yuan, Fan (2023)

2-point correlation function of cosmic shear

Gedget3 DM-only vs HMCode

N-naturalness Model

Addressing the Higgs hierarchy problem up to ~ 10TeV (or even the big hierarchy problem) Arkani-Hamed, Cohen, D'Agnolo, Hook, Kim, Pinner (2016)

Consider N SM-like sectors w/ equally distributed Higgs mass parameter

$$\begin{split} m_{H,i}^2 &= -\frac{\Lambda_H^2}{N}(2i+r) \\ &-\frac{N}{2} \leq i \leq \frac{N}{2} \\ \text{We are } i &= 0 \\ \text{For } N &= 10^4 \text{, cutoff scale} \\ &\Lambda_H \sim 10 \, \text{TeV} \end{split}$$

N-naturalness Model

Addressing the Higgs hierarchy problem up to ~ 10 TeV

(or even the big hierarchy problem)

Arkani, Cohen, D'Agnolo, Hook, Kim, Pinner (2016)

When a "reheaton" that is light (mass $< \Lambda_H / \sqrt{N}$) & couples to sectors w/ certain universal form of the couplings, it mainly reheats into the lowest scale sector (which is our SM sector)

Minimum dark sector signal,

a tower of SM-like heavy neutrinos (i-sectors) + dark radiation (i-sectors of photons and massless particles)

WDM masses and DR energy density are determined by 3 parameters (N, reheaton mass m_{ϕ} , fine-tuning parameter r)

15

See also the thermal history calculatio in Choi, Chiang, LoVerde (2018)

P(k) suppression from a tower of warm DM

Different shape of Pk suppression from multiple WDM becoming non-relativistic at different times

Vertical lines: inverse comoving time when each N-neutrino becomes non-relativistic

Black: "single" WDM that matches the N_{eff} and today's N-neutrino abundance

A precise Pk measurement (higher-z, larger sampling,...) allow us to identify the different WDM suppression

Vertical lines: inverse comoving time when each N-neutrino becomes non-relativistic

Black: "single" WDM that matches the N_{eff} and today's N-neutrino abundance

Majoron and Neutrino mass generation Neutrinos are are much lighter than other SM fermions because their masses come from a different origin Gelmini & Roncadelli (1981), Chikashige, Mohapatra, Peccei (1981), Georgi, Glashow, Nussinov (1981), Valle (1983), Gelmini, Valle (1984), ...

For example, Majorona ${\it m}_{
u}$ from a spontaneous

symmetry breaking at energy scale f

$$\frac{\Phi_{\alpha}\Phi_{\beta}}{\Lambda^{3}}(\bar{L}_{\alpha}H)(HL_{\beta}) \qquad \alpha,\beta=e,\mu,\tau$$
$$\Phi_{\alpha}=f_{\alpha}e^{i\frac{\phi_{\alpha}}{f_{\alpha}}} \qquad m_{\nu}\sim f\left(\frac{f\nu^{2}}{\Lambda^{3}}\right)$$

Yuhsin Tsai: ytsai3@nd.edu

19

The goldstone boson of the symmetry breaking allows SM-neutrinos to decay

Current bound on neutrinos' mass & decay-rate There's a degeneracy between mass-lifetime

Franco Abellan, Chacko, Dev, Du, Poulin, YT (2022)

Break the mass-lifetime degeneracy with higher-z data

Serpico (2007) (2009)

Barenboim, Chen, Hannestad, Oldengott, Wong (2021)

Yuhsin Tsai: ytsai3@nd.edu

22

Mass & lifetime determination

Projection with Planck+future Euclid P(k)+Euclid lensing

Precise matter power spectrum measurements allow us to probe/identify these BSM targets

Yuhsin Tsai: ytsai3@nd.edu

24

Backup Slides

Recombination of mirror He and H

Bansal, Kim, Kolda, Low, YT (2022)

If we can measure the linear-power spectrum

Chacko, Curtin, Geller, YT (2018)

Non-linear correction to Twin Higgs DAO

Ghosh, Matthews, Tang, YT

How stable are SM neutrinos?

Existing bounds on neutrino lifetime are very weak (for decay into invisible particles)

In long-based line experiments $\tau > 10^{-14} \, {
m sec}$

- supernovae $\tau > 8 \, {
m hrs}$ e.g., Frieman et al (1988)

 $au > 13 \, {
m yrs}$ CMB (neutrinos need to free stream)

e.g., Archidiacono and Hannestad (2014) Escudero and Fairbairn (2019)