

Image: D. Schlege

## Probing primore alloon-Gaussianity by reconstructing the initial conditions with machine learning

### Xinyi Chen Yale University

w/ Nikhil Padmanabhan, Daniel Eisenstein





### Status of LSS on **constraining local PNG**

- •Current best: -12±21 (eBOSS DR16 QSO, Mueller et al. 2022)
- Usual technique: scale-dependent bias on galaxy power spectrum
  - Systematics
  - Cosmic variance on large scales
  - Forecast DESI  $\sigma(f_{\rm NL}) \sim 10$  (Sailer et al. 2021)
- Adding Bispectrum -> tighter constraints
  - •e.g. a factor of ~2-4 Pk -> Pk+Bk (SPHEREx, Dore et al. 2014, Heinrich, Dore & Krause 2023)
  - Large bispectrum from gravity
  - Large data vectors



Near-optimal 2-pt bispectrum estimator









## New approach to constraining PNG

- Reconstructing the density field
- •Computing and fitting a near-optimal 2-pt bispectrum estimator

## New approach to constraining PNG

### Reconstructing the density field

Computing and fitting a near-optimal 2-pt bispectrum estimator

# Reconstruction of the initial conditions: reverse a late-time density field back to initial density field



### Late-time

Matter density fields at high resolution (1024<sup>3</sup> particles in 1 Gpc/h box) at z=0, on a 512<sup>3</sup> grid, using Quijote simulations (Villaescusa-Navarro et al. 2020)



### Initial



### Density field reconstructed by the standard reconstruction algorithm still nonlinear





### Late-time

Matter density fields at high resolution (1024<sup>3</sup> particles in 1 Gpc/h box) at z=0, on a 512<sup>3</sup> grid, using Quijote simulations (Villaescusa-Navarro et al. 2020)

195*Mpc/h* 

(Eisenstein et al. 2007)

Initial



### A new reconstruction method

A hybrid method that combines convolutional neural network (CNN) with a traditional algorithm based on perturbation theory (**Chen** et al. 2023, Shallue & Eisenstein 2023)



Matter density fields at high resolution (1024<sup>3</sup> particles in 1 Gpc/h box) at z=0, on a 512<sup>3</sup> grid, using Quijote simulations (Villaescusa-Nayarro et al. 2020)





### Large-scales use perturbation theory, small-scales use CNN

- First step: traditional algorithm
- Second step: train CNN with reconstructed density fields
- CNN is relatively local, but perturbation theory provides good approximation on large scales. So traditional algorithm for large scales, CNN for smaller scales.



### Late-time

Standard recon

CNN trained w/ standard recon field

Initial



### **CNN improves cross-correlation**



Real space matter field z=1, using Quijote simulations (Villaescusa-Navarro et al. 2020)

Reconstruction algorithm used: Hada & Eisenstein 2018 (HE18)

- 9

### Hybrid recon boosts traditional algorithms in halo fields too



Reconstruction algorithm used: Hada & Eisenstein 2018 (HE18)



### Model trained with no PNG works for PNG



Real space matter field z=1, using Quijote-PNG simulations (Coulton et al. 2022)

Reconstruction algorithm used: Hada & Eisenstein 2018

$$r(k) = \frac{\langle \delta^*(k) \delta_{\text{ini}}(k) \rangle}{\sqrt{\langle \delta^2(k) \rangle \langle \delta_{\text{ini}}^2(k) \rangle}}$$

CNN+Algorithm

$$- f_{\rm NL} = + 100$$
  
...  $f_{\rm NL} = 0$ 

$$- f_{\rm NL} = -100$$

1.0

## New approach to constraining PNG

- Reconstructing the density field
- Computing and fitting a near-optimal 2-pt bispectrum estimator

—

Near optimal by maximum likelihood estimation, first proposed by Schmittfull, Baldauf & Seljak 2015







Real space matter field z=1



## Fisher error $\sigma(f_{NI})$ for cross-power with matter density field of 1 Gpc/h volume

| $k_{\max}$          | Smoothing                    | IC  |
|---------------------|------------------------------|-----|
|                     | $10 \ h^{-1} \ \mathrm{Mpc}$ | 52. |
| $0.1 \; h/{ m Mpc}$ | $5 \ h^{-1} \ \mathrm{Mpc}$  | 48. |
|                     | Cosine                       | 46. |
| $0.2 \; h/{ m Mpc}$ | Cosine                       | 15. |



- the same  $k_{\rm max}$ , need smoothing
- •Single parameter forecast: CNN+HE18  $\sigma(f_{\rm NI})$ ~50, pre-recon  $\sigma(f_{\rm NI})$ ~76  $(k_{\text{max}} = 0.1 \ h/\text{Mpc}) - \sim 1.5 \text{x improvement}$
- Reconstruction allows higher  $k_{\rm max}$
- cross-power estimators

• Cross-power accesses higher k, thus more information than bispectrum when compared at

•Optimistic without including other bias terms (square, shift, tidal) -> can compute similar

### Summary

- Reconstruction with CNN+Algorithm removes most gravitational nonlinearity and strengthens the primordial signal
- Cross-power estimator easy to compute and promising to estimate  $f_{\rm NL}$ • Application of reconstruction on cross-power estimator gives low  $\sigma(f_{\rm NI})$  although slightly
- biased mean

### **Ongoing work**

- square, shift, tidal with bispectrum estimator)
- Developing probabilistic ML model to do better reconstruction for high shot noise biased tracer (also w/ Carolina Cuesta-Lazaro)
- Applying to non-local types of PNG, extending cross-power estimator (can be more helpful there because equilateral and orthogonal can't rely on scale-dependent bias) Constraining primordial features with DESI data with hybrid reconstruction (also w/
- Xingang Chen)

## • Including quadratic gravitational bias terms in the model (estimate each bias term -

### In relation to future surveys...

Still a lot to be done

For now —

- Reconstruction will benefit from higher-number density
- Reconstruction allows us to use higher k modes, so large volume less important, but not so if we want to combine with scale-dependent bias approach

Xinyi Chen xinyi.chen@yale.edu

