

Cosmology with the Lyman- α Forest

Roger de Belsunce

+ Vid Irsic, Oliver Philcox, Simone Ferraro, Pat McDonald, Martin White, Julien Guy, Nathalie Palanque-Delabrouille, Andreu Font-Ribera, Andrei Cuceu, Naim Karacayli

Spec-S5 meeting @ LBL: May 8, 2024

Probing cosmology at different scales

Breaking degeneracies

.....

.....

A. Cuceu

Why do we need a high-z measurement?

Break degeneracies from BAO measurements

¹ du Mas des Bourboux *et al.* (2020)

Lyman-a forest 3D power spectrum

Comparison to best-fit theory prediction from 2PCF measurement¹

Consistent anisotropic P3D from eBOSS at z~2.33 for NGC and SGC at 1-2 σ level

Theory vs. simulation-based analyses

¹ Chen, Vlah & White (2022)
² Ivanov (2023)
³ Bird+ (2018)
⁴ Pedersen+ (2020, 2023)
⁵ Cabayol-Garcia+ (2023)

Perturbative models^{1,2}

- Theoretically well motivated (EFTofLSS)
- Fast but difficult to compute
 - Higher-order terms / N-PCF
- High z \rightarrow high k reach

Emulator model^{3,4}

- Simulation-based model
 - Ly-a forest resolution at all scales required
 - Can extend to non-perturbative regimes

- Field-level inference

(Potentially) extract all the available information

Hybrid model: (EFT + simulation-based model)

BERKELEY LAB Roger de Belsunce | Cosmology from the Lyman-a forest

Full-shape analysis of Lyman- α forest data

Accurate model down to smaller scales?

Probe scales from CMB to Lyman- $\!\alpha$

From large to small scales

- CMB
 - Sensitive to large scales
 - Traces projected matter density
 - Probe reionization & inflation
 - Probe amplitude of matter fluctuations
- Lyman-α forest
 - Sensitive to small scales
 - Suppression of matter clustering $\rightarrow M_v$
- Break degeneracies with bias
 - CMB x Lyman-α
 - QSO x Lyman- α

CMB lensing x Lyman-a forest: power spectrum

Break degeneracies to measure S_8 : $\sigma_8^2 \sim \langle \delta_m^2 \rangle$

¹ Zaldarriaga et al. (2001)
² Valinotto et al. (2009)
³ Doux et al. (2016)

.....

~4 σ detection of CMB lensing x Lya forest: power spectrum

First signal from DESI year-1 data

~4.8o detection of CMB lensing x Lyman-a P1D

Measuring a squeezed bispectrum

Signal from 290,000 Lyman-a forests at z*~2.4 *but* cosmology interpretation difficult

What do gain from Spec-S5?

More lines of sight + cross-correlations with high-z galaxies

¹ McDonald & Eisenstein (2007) ² McQuinn & White (2011)

Summary & next steps

• Lyman-α forest probes:

.....

- small scale clustering
- high redshift: 2 < z < 5
- early-Universe physics
- Robust P3D estimator to extract information at all scales from Lyman-a forest
 - sensitive to large-scale intensity and temperature fluctuations^{1,2}
- Detection of CMB lensing x Lya forest power spectrum signal

Lyman- α : high z \rightarrow high k

