Local Primordial Non-Gaussianity with Spec-S5 - "Leveraging the b_{ϕ} dimension of multi-tracer"

Fundamental Physics from Future Spectroscopic Surveys

Jamie Sullivan (based on work w/ Uroš Seljak, Tijan Prijon) arXiv:2303.08901

Measuring LPNG in Galaxy Surveys

Universal Mass Function (UMF) & the p factor

LPNG "boosts local variance"

Halos form after crossing threshold, affected by LPNG

Most analyses

 Assume UMF form:

$$b_{\phi}(b,p) \propto b-p$$

The *p* factor matters!

If we don't know p, lose constraining power on f_{NL} What causes p to change?

Several things...

The *p* factor matters!

If we don't know p, lose constraining power on f_{NL}

What causes *p* to change?

Several things...

Halo concentration *c* has a large effect

The *p* factor matters!

If we don't know p, lose constraining power on f_{NL} What causes p to change?

Several things...

Halo concentration *c* has a large effect

Color is even bigger!

Sub-sample Multi-tracer

- Identify multi-tracer sub-samples according to b_{ϕ}
- Choose according to modeled assembly bias (somehow)

Seljak09, McDonald+Seljak09, Schmittfull+Seljak18

 $\sigma(f_{
m NL}^{
m (loc)}) \propto \left(\, rac{b_{\phi,1}}{h_1} \,
ight)$

Future LPNG Surveys - MT vs ST

"Spec-S5" forecast - matches expectation

Extension to many samples (SPHEREx)

More realistic case (mock DESI samples)

	$\mathrm{ELG} + \mathrm{LRG}$	$\sigma(f_{NL}^{ m loc})$
Use multiple galaxy	p = 1	4.0
subsamples	(2) ($\overline{\text{LRG}}, \overline{\text{ELG}}$), ideal	2.3
Subcamples have	(2) ($\overline{\text{LRG}}, \overline{\text{ELG}}$), pred	2.3
Subsamples have	(2) (LRG+, ELG+), ideal	1.4
different b_{ϕ}	(2) (LRG+, ELG+), pred	2.4
Large improvement	(3) (LRG-, LRG+, ELG-), ideal	0.8
ever "poive"	(3) (LRG-, LRG+, ELG-), pred	2.0
over naive	(3) (LRG-, ELG+, ELG-), ideal	0.8
multitracer!	(3) (LRG-, ELG+, ELG-), pred	2.0
	(3) (LRG-, ELG+, else), ideal	0.6
	(3) (LRG-, ELG+, else), pred	1.5

Discussion Questions

- Can we design samples with very different b_{a} ?
 - Reasonable limits to this?
- Can we model b_{ϕ} (or p) as a function of redshift?
 - Incorporating selection?
- Can we confidently split the data if number density is too low? At high redshift?
- Relation to "low- Δ " non-local f_{NI} (Green+23, Sam's talk)