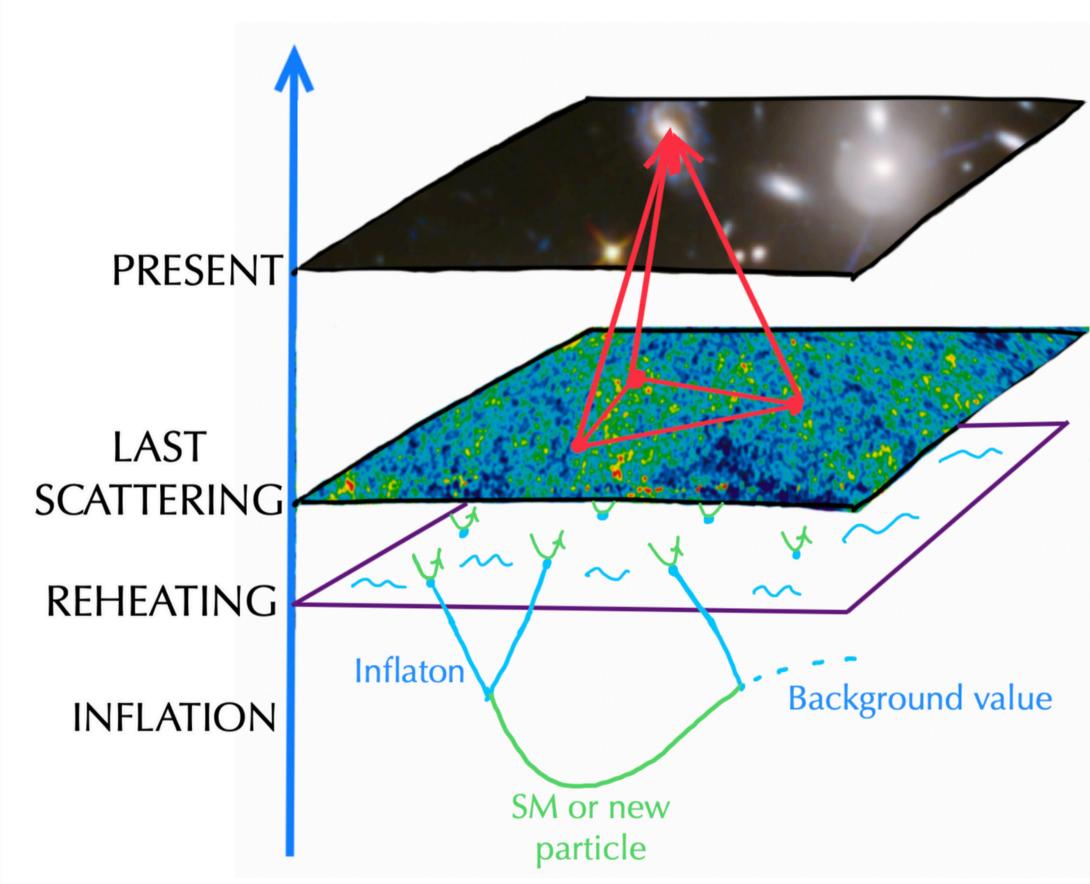
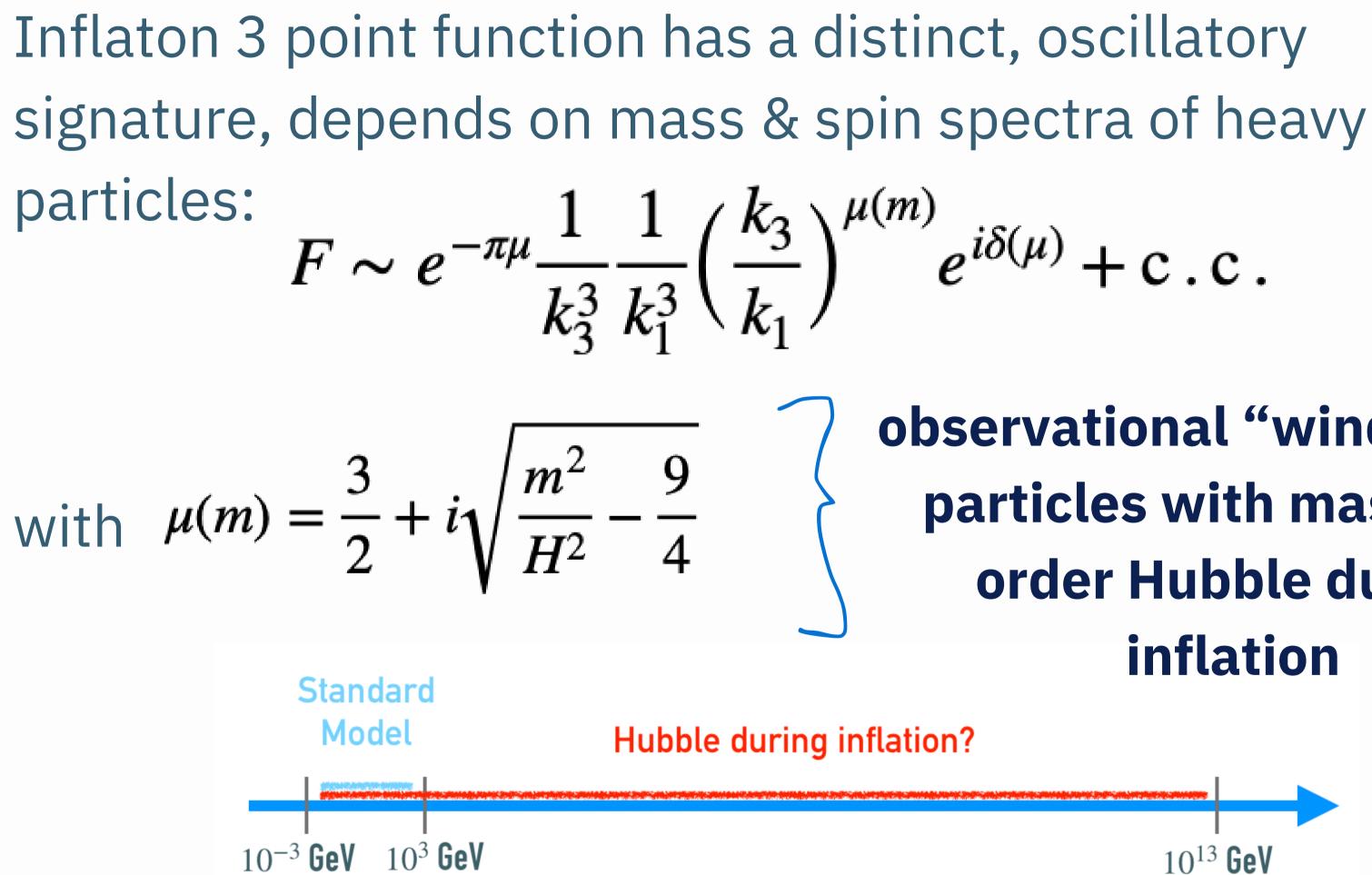

An Effective Cosmological Colider


Amara McCune, amara@physics.ucsb.edu **University of California, Santa Barbara** Fundamental Physics for Future Spectroscopic Surveys



Based on 2401.10976 with Nathaniel Craig & Soubhik Kumar

observational "window" for particles with masses of order Hubble during inflation

Probing P and CP Violations on the Cosmological Collider

Tao Liu, Xi Tong, Yi Wang, Zhong-Zhi Xianyu		Continue	ous Spectrum on Cosn
Disentangling mass spectra of multiple fields in cosmolog Shuntaro Aoki, Masahide Yamaguchi	ical collider	Shuntaro Aol	ki The Yi–Pend
Cosmological Collider Physics and the Curvaton	Prospec	ts for C	osmological Collid
Soubhik Kumar, Raman Sundrum	P. Daniel Meerburg, Moritz Münchmeyer, Julian B. Mu		
Missing Scalars at the Cosmo	ological Co	ollider	Large-Field
Qianshu Lu, Matthew Reece, Zhong-Zhi Xianyu			Matthew Reece, Lia
Large Spin-2 Signals at the Cosmologica	In Search of Large Signals at t		
Xi Tong, Zhong-Zhi Xianyu		Lian-Tao Wang, Zhong-Zhi Xianyu	
Shapes of the Cosmological Lo	w-Speed (Collider	Gauge Boson Signa
Sadra Jazayeri, Sébastien Renaux-Petel, Denis Werth			Lian-Tao Wang, Zhong-Zhi X
Standard Model Background of the Cos	smologica	l Collider	Lian Tao Wang, Zhong Zhi A
Xingang Chen, Yi Wang, Zhong-Zhi Xianyu			Large-Field Infl
			Matthew Reece, Lian-Ta

Classical Cosmological Collider Physics and Primordial Features

Xingang Chen, Reza Ebadi, Soubhik Kumar

Light Scalars at the Cosmological Collider

Priyesh Chakraborty, John Stout

The Scalar Chemical Potential in Cosmological Collider Physics

Arushi Bodas, Soubhik Kumar, Raman Sundrum

Higher Spin Supersymmetry at the Cosmological Collider: Sculpting SUSY Rilles in the CMB

Stephon Alexander, S. James Gates Jr., Leah Jenks, K. Koutrolikos, Evan McDonough

Lots of interest! + connections to BSM physics

mological Collider

cosmological collider in R^2 inflation

a Wu er Physics

uñoz, Xingang Chen

Inflation and the Cosmological Collider

an-Tao Wang, Zhong-Zhi Xianyu

the Cosmological Collider

als at the Cosmological Collider

lianyu

lation and the Cosmological Collider

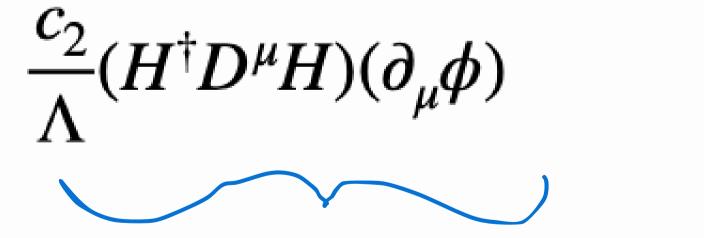
ao Wang, Zhong-Zhi Xianyu

How can we perform systematic calculations with the cosmological collider to compare with the results of spectroscopic surveys?

Pertinent operators have mass dimension 5 or higher: $\mathscr{L} \supset \sim f\left(\frac{\partial \phi}{\Lambda^2}\right) \mathscr{O}_{SM}$

The usual EFT tools require careful consideration: 1. We are interested in cosmological correlators at a fixed time slice

2. Computations take place in an inflationary background


Boundary terms from IBP do not necessarily vanish Field redefinitions may shift the correlator itself

A Gauge-Higgs Example

Consider: $\mathscr{L}_{0} = (D_{\mu}H)^{\dagger}D^{\mu}H - m^{2}|H|^{2} - \lambda|H|^{4} + \frac{1}{2}\partial^{\mu}\phi\partial_{\mu}\phi - \frac{1}{4}Z_{\mu\nu}Z^{\mu\nu}$

where
$$D_{\mu} \equiv \partial_{\mu} - igZ_{\mu}$$

At dim-5, one could write the operator: $\frac{c_2}{\Lambda}(H^{\dagger}D^{\mu}H)(\partial_{\mu}\phi)$

Find that this operator is redundant

Main Takeaways 1) Systematic treatment of boundary terms 2) Isolates physical effects and uncovers all pertinent operators 3) Provides an EFT organization

Operator	Observables	
$\mathcal{O}_{5,4}=\phi F_{\mu u} ilde{F}^{\mu u}$	Loop [87]	
$\mathcal{O}_{6,1} = (abla_\mu \phi)^2 \mathcal{H}^\dagger \mathcal{H}$	Tree [39] and Loop [36]	
$\mathcal{O}_{7,2} = \mathcal{H} ^2 abla_\mu \phi abla_ u F^{ u \mu}$	Loop	
$\mathcal{O}_{7,4} = F_{\mu\nu} \nabla^{\mu} \phi \nabla_{\rho} F^{\rho\nu}$	Loop	
$\mathcal{O}_{8,1}=F_{\mu u}F^{\mu u}(abla_ ho\phi)^2$	Loop [36]	
$\mathcal{O}_{8,2}=F_{\mu u} ilde{F}^{\mu u}(abla_ ho\phi)^2$	Loop	
$\mathcal{O}_{8,3} = \mathcal{H} ^4 (abla_\mu \phi)^2$	Tree and Loop	
$\mathcal{O}_{8,4} = D_\mu \mathcal{H} ^2 (abla_ u \phi)^2$	Loop [36]	
$\mathcal{O}_{8,5} = (D^{\mu}\mathcal{H})^{\dagger}D^{ u}\mathcal{H} abla_{\mu}\phi abla_{ u}\phi$	Loop	
$\mathcal{O}_{8,6}=F_{\mu ho}F^{ u ho} abla^{\mu}\phi abla_{ u}\phi$	Loop	
$\mathcal{O}_{9,2} = \mathcal{H} ^2 \mathcal{O}_{7,2}$	Loop	
$\mathcal{O}_{9,4} = \mathcal{H} ^2 \mathcal{O}_{7,4}$	Loop	
$\mathcal{O}_{9,5} = \nabla_{\nu} \phi \nabla^{\mu} (\mathcal{H}^{\dagger} \mathcal{H}) F_{\mu \alpha} F^{\nu \alpha}$	Loop	
$\mathcal{O}_{9,6} = \mathcal{O}_{5,1} F_{\alpha u} F^{\alpha u}$	Loop	
$\mathcal{O}_{9,7} = \mathcal{O}_{5,1} F_{lpha u} ilde{F}^{lpha u}$	Loop	
$\mathcal{O}_{9,8} = \nabla_{\nu} \phi \nabla_{\beta} F^{\beta \mu} F_{\mu \alpha} F^{\nu \alpha}$	Loop	
$\mathcal{O}_{9,9} = \mathcal{O}_{5,3} F_{\alpha u} F^{\alpha u}$	Loop	
$\mathcal{O}_{9,10}=\mathcal{O}_{5,3}F_{lpha u} ilde{F}^{lpha u}$	Loop	
$\mathcal{O}_{9,11}=\mathcal{O}_{5,1}(abla_\mu\phi)^2$	Tree and Loop	
$\mathcal{O}_{9,12}=\mathcal{O}_{5,3}(abla_{\mu}\phi)^2$	Tree [39] and Loop	
$\mathcal{O}_{9,13}=\mathcal{O}_{5,1} D_{\mu}\mathcal{H} ^2$	Loop	
$\mathcal{O}_{9,14} = abla_{\mu} \phi abla^{ u} (\mathcal{H}^{\dagger} \mathcal{H}) (D^{\mu} \mathcal{H})^{\dagger} D_{ u} \mathcal{H}$	Loop	
$\mathcal{O}_{9,15}=\mathcal{O}_{5,3} D_{\mu}\mathcal{H} ^2$	Loop	
$\mathcal{O}_{9,16} = \nabla_{\nu} \phi \nabla_{\alpha} F^{\alpha\mu} (D^{\nu} \mathcal{H})^{\dagger} D_{\mu} \mathcal{H}$	Loop	
$\mathcal{O}_{9,18} = \nabla_{\nu} \nabla_{\mu} \phi \nabla_{\alpha} F^{\alpha \mu} \nabla_{\beta} F^{\beta \nu}$	Loop	
$\mathcal{O}_{9,19} = abla_{ u} abla_{\mu} \phi abla_{lpha} F^{lpha \mu} abla^{ u} (\mathcal{H}^{\dagger} \mathcal{H})$	Loop	

Future Directions

1) Methods may be generalized to other sectors & models of inflation

2) Precise computation of effects at loop order 3) Extension of flat-space EFT methods

Summary

- 1) Establishing a minimal operator basis is essential for full utilization of the cosmological collider
- 2) Standard assumptions of EFT construction in flat space require reconsideration
 - 3) There are lots of opportunities for crosscollaboration with effective field theorists & cosmologists!