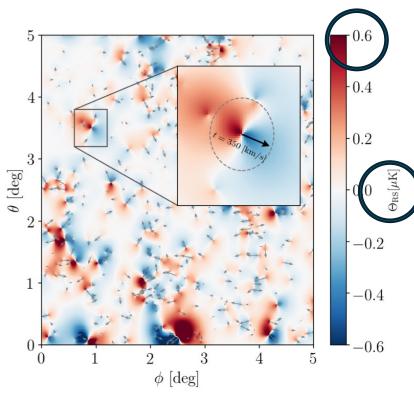

Moving lens: detection prospects

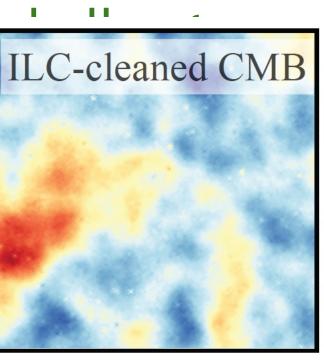
Elena Pierpaoli (USC)


Hotinli & EP arXiv:2401.12280 Hotinli, EP, Ferraro, Smith arXiv:2305.15462

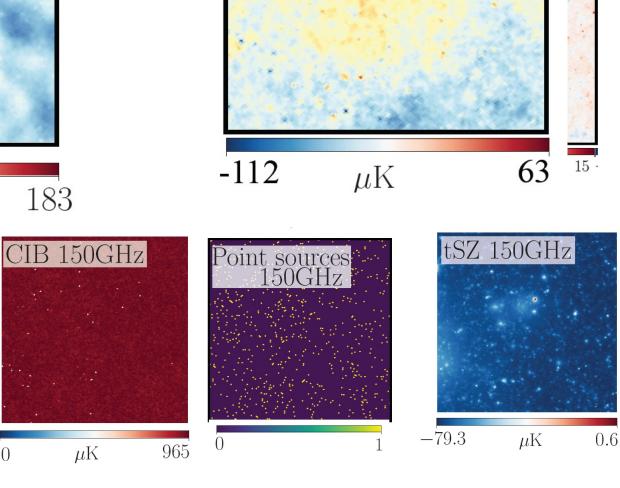
What it is, motivation, and naïve estimates

• What: Dipolar temperature change in the direction of a halo:

- Why:
 - one of the two ways of measuring transverse velocities (other: polarized SZ, affected by different systematic effects)
 - Potential for making 3D velocity reconstruction
 - Potential of constraining cosmology (e.g. modified gravity)



- Small dipolar signal
- Same frequency dependence as CMB
- Extended (beyond the virial radius)
- It depends on mass and velocity of halos


Small, but detectable with upcoming surveys (Hotinli et al 2019, Yasini, Mirzatuny, EP 2019)

Real Univers

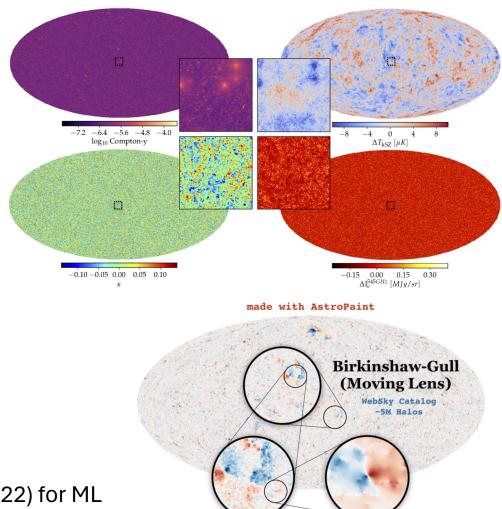
- Confusion by the same sign
- Competing signals with the
 - CMB anisotropies
 - Halo lensing (also inducing
 - Kinetic SZ (kSZ,spherical sh
- Other competing signals:
 - Cosmic Infrared background
 - Thermal SZ effect (tSZ)
 - Radio point sources
 - Component s $_{-383}$ $\mu {\rm K}$ mandatory
 - Even with perfect component separation, detecting velocities is challenging

n)

Primary CMB

153

Freq. foregrounds


Detection strategies

- No detection of ML at the moment
- Single- Halo detection? Difficult.
- Statistical detection:
 - Stacking analysis
 - Pairwise velocity
- Practically:
 - Generate simulated frequency sky maps for all relevant [correlated and uncorrelated] signals
 - Perform component separation with ILC to extract the component that has a black-body spectrum.
 - Apply either stacking or pairwise velocity to detect ML.

Astropaint (Yasini et al 2022) for ML and halo lensing

Simulated maps

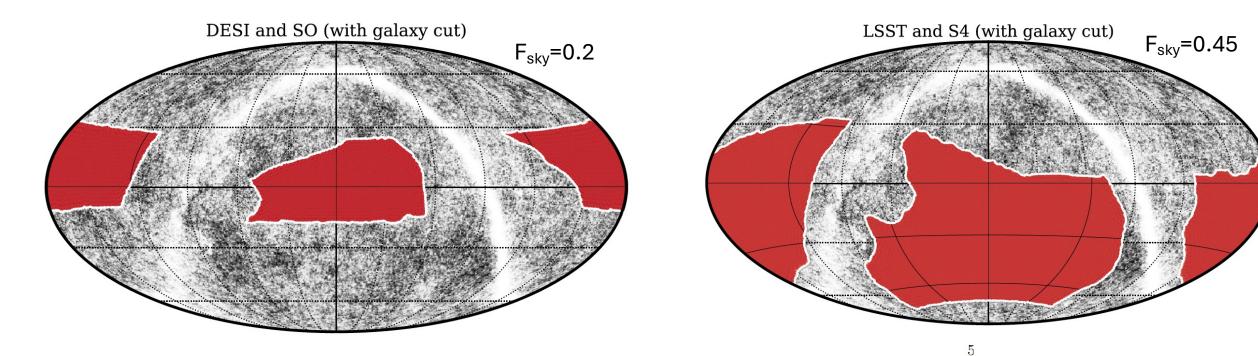
WebSky simulations for halos: tSZ, kSZ, CIB, (Stein et al 2020) radio point sources (Li et al 2022)

How can we detect the moving lens?

• The signal is too small to be detected on a cluster-by-cluster basis for a large number of objects. It needs to be detected statistically.

Component separation

Multi-frequency observed maps


 Black-body signals map (CMB, ML, Halo lensing,kSZ + residual tSZ, CIB, point sources)

→ Oriented stacking along velocity direction

 \rightarrow Matched filtering + pairwise velocity

 The final result will depend on the component separation method and on the detection method (and from the experiment's technical specifications)

Experiments considered

CMB Experiment	Frequency in $GHz =$	40	90	150	220	Sky fraction
CMB-S4	$\theta_{\rm FWHM}$ [arcmin] =	5.5	2.3	1.4	1.0	0.7
	$\Delta_T \ [\mu K'] =$	21.8	12.4	2.0	6.9	
Simons Observatory (SO)	$\theta_{\rm FWHM}$ [arcmin] =	5.5	2.3	1.4	1.0	0.4
	$\Delta_T \ [\mu K'] =$	27.0	5.8	6.3	15.0	

Overlap generated with code from Coulton et al 2022

Table 1. The CMB white noise parameters used in this analysis that match CMB-S4 and SO experimental specifications.

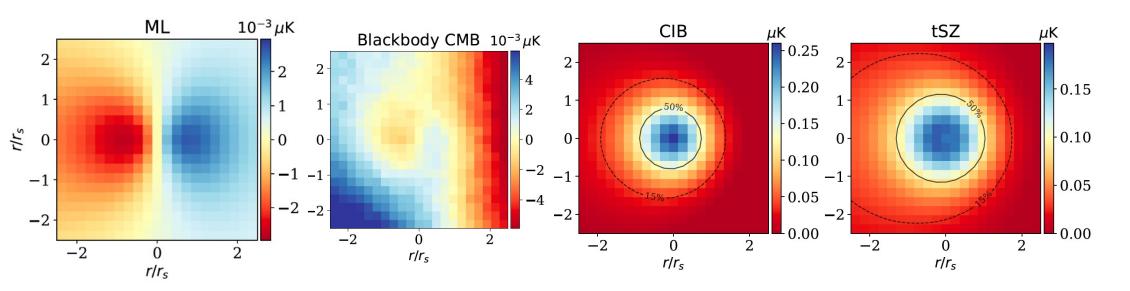
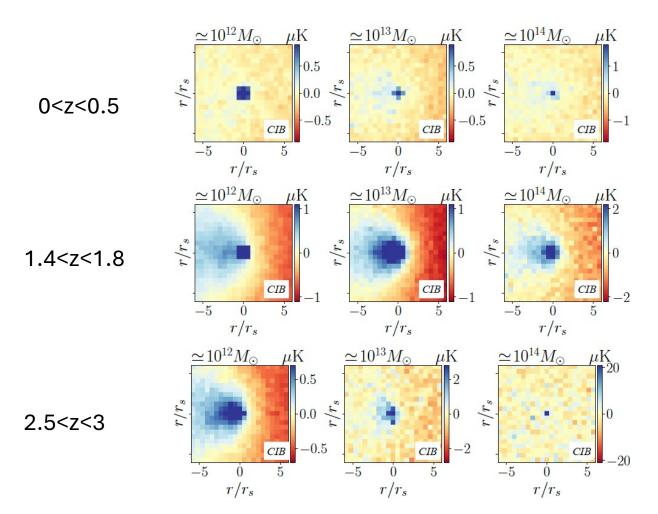

LSS Experiment	Redshift $z =$	0.26	0.38	0.50	0.64	0.79	0.96	1.14	1.35	1.58	1.84	2.15
LSST	$dn_{gal}(z)/dz \ [1/\operatorname{arcmin}^2] =$	15.4	20.8	22.9	21.8	18.6	14.4	10.0	6.34	3.57	1.77	0.75
DESI	$dn_{gal}(z)/dz \ [1/\operatorname{arcmin}^2] =$	0.15	0.18	0.24	0.36	0.56	0.47	0.45	0.36	0.14	0.02	0.0

Table 2. The galaxy number counts we use that match LSST ($m_{\text{lim}} \gtrsim 26$) and DESI surveys.

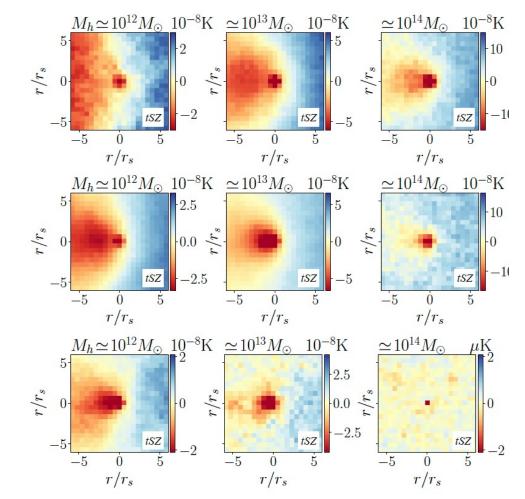
Stacking

- Procedure:
 - Take the galaxy survey and use the continuity equation to get the velocity field from the density field as traced by galaxies
 - Take submaps around halos out of the ILC component separated CMB map
 - Orient and rescale the halos so that the velocities have the same directions
 - Cross fingers that all other signals aside from ML are averaged out.

BAD LUCK! CIB and tSZ residuals are large and show a correlated signal with velocity direction

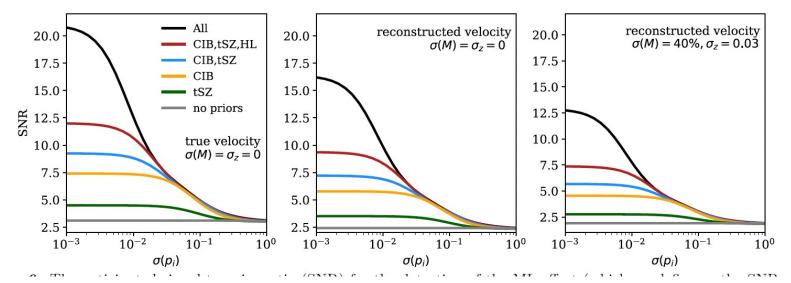


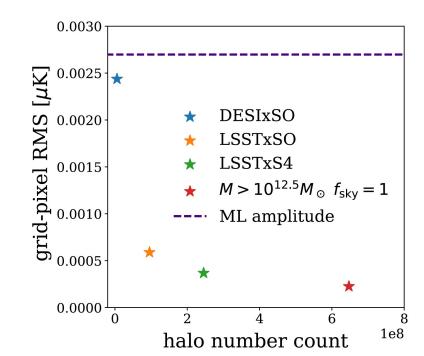
Bad luck or good luck?


This physical effect is in the simulations, and it is mass and redshift dependent

If ignored: substantial potential bias on velocity determination from single-frequency observation.

Clusters @ 150 GHz

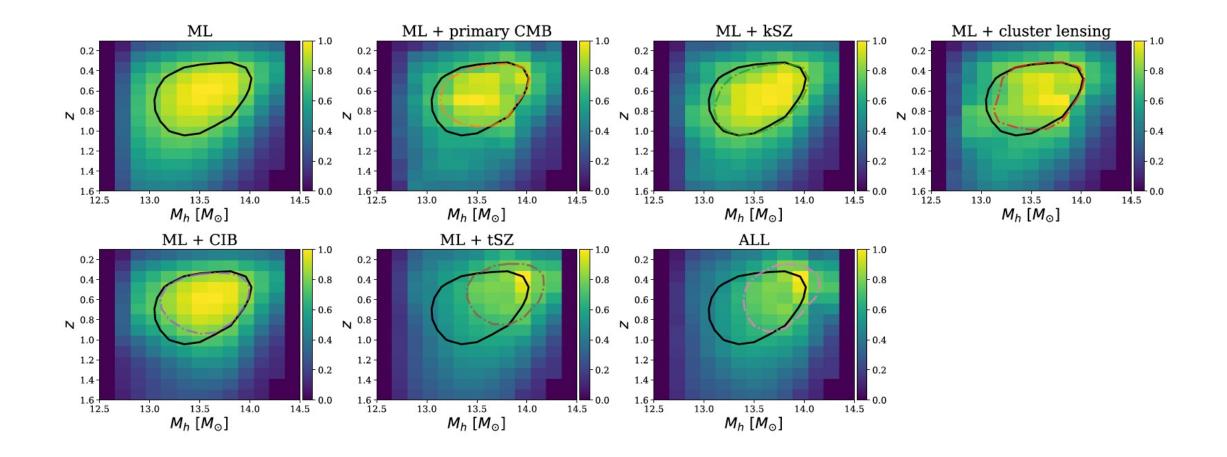

CIB @ 220 GHz


Results with stacking

Results for CMB-S4+LSST

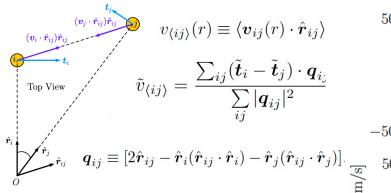
- No foreground knowledge: no detection
- Good knowledge of CIB and tSZ: 5-12.5 σ detection
- No error in M and z: adds about 3 σ
- Perfect velocity: adds about 3σ

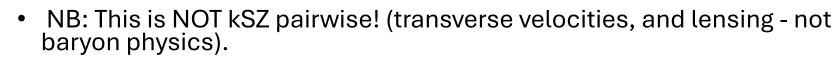
 RMS in ILC-cleaned CMB maps: improves significantly with halo number count in overlapping regions.



Estimates of S/N via Fisher Matrix

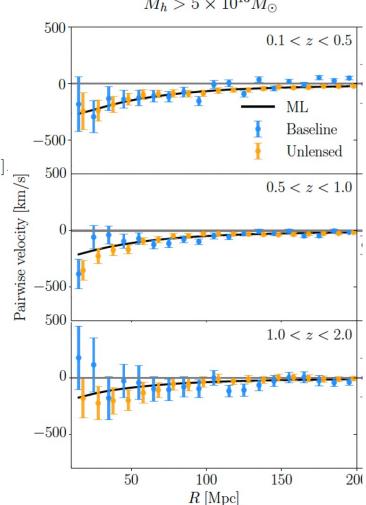
 $m{\pi} = \{A_{\mathrm{ML}}, A_{\mathrm{lCMB}}, A_{\mathrm{kSZ}}, A_{\mathrm{HL}}, A_{\mathrm{CIB}}, A_{\mathrm{tSZ}}\}$


Which halos contribute the most to the detection


• Relative contribution of halos to the total SNR shifts towards lower redshifts and higher masses as all disturbing signals are included.

$M_h > 5 \times 10^{13} M_{\odot}$

Pairwise velocities



• Same procedure as for stacking, plus matched filtering to get velocities.

- CMB-S4 + LSST will be able to detect the transverse velocities. SO+DESI no.
- CIB and tSZ less (or not) of an issue. Main problem: halo lensing.
- Mass and redshift determination don't seem to be very relevant
- VERY computationally demanding better strategy needed?

LSST+CMB-S4									
$M_h > 5 \times 10^{13} \dot{M_{\odot}}.$									

	SNR	$z \in [0.1, 0.5]$			$z \in$	$\in [0.5, 1.0]$		$z \in$			
1	$R \in$	$<150 {\rm Mpc}$	$> 150 {\rm Mpc}$	All	$<150 {\rm Mpc}$	$> 150 \mathrm{Mpc}$	All	$<150 {\rm Mpc}$	$> 150 \mathrm{Mpc}$	All	Total
	baseline	5.17	-	5.17	6.31	2.84	7.11	3.14	0.99	3.25	9.4
\odot .	unlensed	9.2	3.82	9.72	8.38	3.76	9.23	4.11	1.71	4.38	14.1

Conclusions and developments

- Yes ML will be detected, despite the ugliness of the real world
- Best perspectives for detection:
 - Better component separation (more tailored strategy)
 - higher resolution CMB experiments with good frequency coverage to facilitate component separation
 - Different detection strategies/methodology
 - Increased number density of galaxies
 - Better redshift determination for the galaxies
 - All of the above elements are intertwined, so it is hard to provide at this point actual quotes for improvements for cases not yet studied.
 - Really good simulations of various correlated effects are very important for these types of studies.