Contribution ID: 28

A new method to determine H₀ from cosmological energy-density measurements

Wednesday, 8 May 2024 08:50 (10 minutes)

We introduce a new method for measuring the Hubble parameter from low-redshift large-scale observations that is independent of the comoving sound horizon. The method uses the baryon-to-photon ratio determined by the primordial deuterium abundance, together with Big Bang Nucleosynthesis (BBN) calculations and the present-day CMB temperature to determine the physical baryon density $\Omega_b h^2$. The baryon fraction Ω_b / Ω_m is measured using the relative amplitude of the baryonic signature in galaxy clustering, scaling the physical baryon density to the physical matter density. The physical density $\Omega_m h^2$ is then compared with the geometrical density Ω_m from Alcock-Paczynski measurements from Baryon Acoustic Oscillations (BAO) and voids, to give H_0 . Current data is only weakly constraining and therefore consistent with both the distance-ladder and CMB H_0 determinations, but near-future large-scale structure surveys (such as the full DESI and Euclid surveys) will obtain $3-4\times$ tighter constraints. Including type Ia supernovae and uncalibrated BAO, and using the baryon signature in BOSS galaxy clustering, we measure $H_0 = 67.1^{+6.3}_{-5.3}$ km s⁻¹ Mpc⁻¹. We find similar results when varying analysis choices, such as measuring the baryon signature from the reconstructed correlation function, or excluding supernovae or voids.

Primary author: KROLEWSKI, Alex Co-author: PERCIVAL, Will Presenter: KROLEWSKI, Alex Session Classification: Session 9