

Making multi-wavelength, multi-redshift predictions for Cross-Survey Cosmological Analyses

Gillian Beltz-Mohrmann

The next decade of cosmology

- The next generation of cosmological surveys will allow us to potentially explore the observational signatures of physics beyond the standard model
- Wealth of information contained in:
 - **Higher-order** clustering statistics
 - Clustering measurements in the nonlinear regime
 - Multi-redshift constraints
 - **Cross-survey** analyses

How do we take advantage of new constraining power?

We need:

- A flexible model of the galaxy-halo connection that is accurate on small-scales
- The ability to model systematics in a physically meaningful and sufficiently complex way
- A framework that allows us to make multi-tracer, multi-z predictions *simultaneously*

A New Forward Model of the Galaxy-Halo Connection

- Goal: to develop a new generation of galaxy–halo models
 - \circ Suitable for multi-z, multi- λ predictions
 - Based on simple physical assumptions
- Approach:
 - Reformulate predictions to be fully probabilistic
 & differentiable
 - Leverage good scaling of JAX on multi-GPU supercomputers
- Long-term goal: a full-scale, multi-redshift, multi-tracer, cross-survey cosmological analysis (including cross-correlations)

What makes Diffsky different?

- Empirical forward model
- Has the flexibility and multiλ predictive power of a semi-analytic model (but no ODEs governing transfer of energy)
- Faster speed due to AI/ML techniques and good scaling of JAX on GPUs
- Model parameters have physical interpretations
- Can validate using hydro simulations & SAMs

S. DEPARTMENT OF

Approaches to modeling the galaxy-halo connection

physical models			empirical models	
Hydrodynamical Simulations	Semi-analytic Models	Empirical Forward Modeling	Subhalo Abundance Modeling	Halo Occupation Models
Simulate halos & gas; Star formation & feedback recipes	Evolution of density peaks plus recipes for gas cooling, star formation, feedback	Evolution of density peaks plus parameterized star formation rates	Density peaks (halos & subhalos) plus assumptions about galaxy—(sub)halo connection	Collapsed objects (halos) plus model for distribution of galaxy number given host halo properties

Wechsler & Tinker 2018

Model capability

- New capability to fit data:
 - Multi-redshift, multi-wavelength, multi-tracer predictions
- Ideal for cross-survey analyses
- Allows for modeling systematics in a physically meaningful and sufficiently complex way
- We can provide validation data for other pipelines to test robustness (i.e. through mock challenges)
- We can populate simulations with different cosmologies (e.g. Abacus) to make mock galaxy catalogs

Prada et al. 2023

Fitting the model to DESI data

- Good agreement with BGS colors, number densities and satellite fractions at z=0.3 & z=0.5
- Also good agreement with LRG number densities and satellite fractions at z=0.5 & z=0.8

Fitting the model to SDSS & COSMOS

Mock validation tests

- Mock galaxy catalogs created with our pipeline are ideal for robust validation tests (i.e. mock challenges) for other pipelines that rely on traditional models of the galaxy-halo connection (e.g. HOD, CLF, EFT)
- These mock challenges represent a growing trend in the field to validate cosmological analyses, especially for non-linear and higher order statistics
 - Currently leading the DESI Emulator Mock Challenge
 - See also comparable work from the Beyond-2pt Collaboration (arXiv:2405.02252)

(Enrique Paillas, Carolina Cuesta, Tristan Fraser, et al.)

Future cosmology analysis

We plan to perform our own **full-scale**, **multi-redshift**, **multi-tracer**, **cross-survey cosmological analysis** (including cross-correlations) with the diffsky pipeline.

N-body simulation

Goals for Future Surveys

- Generate detailed mocks
 - Support wide variety of 0 < z < 5 science
 - Multi-wavelength mocks with joint modeling for LSST, DESI, Roman, Spec-S5
 - Survey-scale volumes with high-res N-body merger trees
- Joint constraints on cosmology + galaxy-halo connection
 - Simulation-based predictions for nonlinear-regime
 - Targeting w(z) with clustering and lensing of magnitude-limited samples between 0 < z < 1

SPACE TELESCOPE

Thank you! Questions?

Andrew Hearin

Alex Alarcon

Matt Becker

gbeltzmohrmann@anl.gov

In collaboration with:

Alan Pearl

Enia Xhakaj

Georgios

Zacharegkas

If this sounds interesting, our team at Argonne is hiring a new postdoc to work on DiffStuff! Contact ahearin@anl.gov for more information!

