Mapping Distant Universe with Lyman Break Galaxies

Christophe Yèche (CEA-Saclay)

High redshift LBGs from deep broadband imaging for future spectroscopic surveys, Ruhlmann-Kleider V. et al., arXiv:2404.03569

Fundamental Physics from Future Spectroscopic Surveys, Berkeley, May 6-8, 2024

irfu

Motivations and strategy

Science case at z>2 in LSS

- H₀ tension: Early Dark Energy
- Dynamical EoS Dark Energy
- S8 tension: Growth of the structures
- Inflation: Scale dependence of bias, bi-spectrum
- Neutrino masses

Future spectroscopic surveys require mapping 2<z<4.5 (even 2<z<5.5) Universe

- Larger redshift range and therefore volume
- Several projects
 - **Spec-S5:** twin 6m telescopes with 13,000 robotic positioners
 - **MUST:** 6.5 telescope with ~20,000 robotic positioners
 - MSE and WST: ~12m telescope with ~20,000 robotic positioners
- New-developed technologies → x10 modes compared to DESI and Euclid

C Q Z

irfu

- z>2 galaxies and quasars as tracers of the matter
 - Lyman-Break galaxies: LBG and Ly- α Emitter Galaxies: LAE

LBG selection with u-dropouts

Principles

- Redshift range: 2<z<2.5</p>
- Use the flux decrement bluewards of the Lyman limit due to HI absorption

irfu

Need a deep u-band: LSST/Rubin In South

Cea

Future Imaging in South

- LSST-Rubin will be available at the time of S5 generation
- Footprint ~15,000 deg²
- Depth (10 years), u: 26.1, g: 27.4, r: 27.5, i: 26.8, z: 26.1, y: 24.1
- Proof of principle with DESI and with CLAUDS imaging

cea

Deep u-band imaging with CLAUDS for pilot survey

Strategy

 $[u^*, u]$ -band depth $(5\sigma/2'')$

M. Sawicki and S. Arnouts, arXiv:1909.0589

- u-dropout with CLAUDS in COSMOS and XMM fields
- Ultra-deep u-bands: u-depth better than ~27-27.5

 $\mathbb{C}2\mathbb{Z}$

The depth is sufficient to validate the imaging that will be available for future spectroscopic surveys (Spec-S5, WST,....)

irfu

LAE selection with medium bands

irfu

Color excess with a medium band → LAE selection

C 2 2

Pilot survey with DESI

- 15000 LBG Targets observed with DESI
- Two observed fields (COSMOS and XMM)
- Exposure time: from 2 hours to 5 hours
- 2000 spectra with Visual Inspection
- Ruhlmann-Kleider V. et al., arXiv:2404.03569

<u>C</u>23

irfu

Determination of redshift

- Two-step approach:
 - A CNN provides the identification and a redshift prior
 - A template fitting method (Redrock) computes the redshift using a +/- 0.10 prior given by the CNN
- Purity: ~90% for (CL>97%) estimated with VI

Redshift and Efficiencies

Excellent agreement between photo-z and spectro redshifts

Cea

- Total efficiency >70% for 2 hours and z>2.8 (<0.5h with 12m Tel.)</p>
- Low efficiency for z<2.5, two possible origins:
 - Lower SNR due to degraded throughput of the instrument in blue

irfu

• Lower fraction of Ly- α emission (galaxy evolution)

XMM field –Clustering with LBGs

cea

g-dropout with HSC and DESI

- Same principle: ugr bands \rightarrow gri bands
- Specto redshift distribution (3.5<z<4.5)
- Efficiency: ~20% with 2 hours and ~35% with 5.5 hours

irfu

For 12m telescope, it will require ~1 hour to get a efficiency at ~50%

cea

LBG surveys – n(z)

– u/g/r dropouts to select LBGs \Rightarrow redshift 2.0<z<5.5

Cea

– r-dropout possible with 12m telescope \Rightarrow Eff=50% for 2 hours

irfu

Ch. Yèche

May 8, 2024 Slide 12

Fundamental Physics from Future Spectroscopic Surveys,

Dark Energy and structure growth

– DE content: for 2<z<4, almost at cosmic variance limitation

irfu

- Measurements up to z=5.5 (matter-dominated era)
- Indirect constraints on EDE models and exotic models

Cea

Primordial Non-Gaussianities

irfu

Cea

Credit: William d'Assignies D.

- With u/g dropouts we can break σ(f_{NL}) ~1 barrier
- Sensitive to inflation models with multi-fields
- Significant gain by adding r-dropouts:

 $\sigma(f_{\text{NL}}){=}0.95 \longrightarrow \sigma(f_{\text{NL}}){=}0.65$

 Worthwhile to study if we can use re-dropouts with 6-m telescopes

Neutrino mass

- With LiteBIRD, expected error on $\sigma(\tau)$: ~0.02
- Sensitivity on $\Sigma m_v < 15 \text{ meV}$
- Measurement of Σm_v better than 4σ

Ch. Yèche Science with the future WST, May 24, 2023 Slide 15

Ly- α Tomography

- 3D map: use Ly-a forest as tracer of IGM for 2.0<z<3.5

irfu

- u-dropouts: 500 to 1000 LoS per deg² with LBGs
- 100 to 150 LoS per deg² with QSOs
- Proto-clusters Science and Voids Science

Cea

Conclusions

DESI Pilot surveys

- Test of target selection with CLAUDS (u-CFHT + HSC)
- Target efficiency >70 % for u-drop selection for z>2.8 with 2 hours.
- Validation of both the u-dropout and g-dropout selections for LBGs with DESI

Lessons for future spectroscopic surveys

- ~8000-10000 targets per sq. deg. with LSST 10 years
- Redshift range with LBGs: 2.0<z<5.5
- Worthwhile to study if we can use re-dropouts with 6-m telescopes

Additional slides

Optimization of color box

- Possibility to tune the n(z) bay applying different definition of the color box
- 'Black' box on the left figure, LBG with 2.5<z<3.5

Sensitivity to u-depth

- u-depth, LSST 1Y (UNIONS, u-CFIS) ~ 24.5
- u-depth, LSST 10Y ~ 26.0
- Even for a u-depth at 25.5, no effect on the selection

