Probing Self-Interacting neutrinos with large-scale structure observations

David Camarena

Department of Physics and Astronomy University of New Mexico

Fundamental Physics from Future Spectroscopic Surveys, LBNL

Francis-Yan Cyr-Racine

John Houghteling

May 7, 2024

Neutrino cosmology

- Neutrinos represent 41% of the energy budget in the early Universe.
- Their gravitational interactions leave distinct imprints in various cosmological observables.
- Cosmological observations enable tight constraints on pivotal parameters describing neutrino properties, e.g., $\sum m_{\nu}$.
- Upcoming surveys will contribute to unveiling the nature of neutrinos!

Probing Self-Interacting neutrinos with LSS observations, David Camarena

2

A fundamental SM prediction

- According to the SM, neutrinos commence to free-streaming at ~ 1 MeV (1s after BB). $\Gamma \sim G_F^2 T^5 \text{ and } H \sim T^2/m_{\rm Pl}$ $\left(\frac{\Gamma}{H}\right) \sim \left(\frac{T_{\rm FS}}{1 \,{\rm MeV}}\right)^3$
- SM implies that before recombination, ν are the only source free-streaming radiation.
- As perturbations will be modified in function of the free-streaming nature of neutrinos, cosmological observables can be used to physics capable of modify the SM prediction!

Puzzling results: self-interactions in the CMB

Some CMB data allow a cosmological scenario in which ν strongly interact, delaying their free-streaming until close to matter-radiation equality!

Puzzling results: self-interactions in the CMB

Some data display an outrageous preference for strongly self-interacting neutrinos!

Broadening the cosmological landscape

The evolution of perturbations as presented by the CMB data suggest that our Universe could feature novel interactions in the neutrino sector, yet...

More puzzling results: self-interaction

The galaxy power spectrum displays a mild preference for stro

D.C, Cyr-Racine, Houghteling arXiv:2309.03941

Kitri

Challenges to the simple self-interacting ν cosmology

Data	$\Lambda \mathrm{CDM}$	$\Lambda \text{CDM} + N_{\text{eff}} + \sum m_{\nu}$	$\mathrm{MI}_{ u}$
$\Delta\chi^2_{ m total}$	2.46	3.84	3.65
ΔAIC_{i0}	8.46	5.84	3.65
B_{i0}	0.0007 ± 0.0005	0.023 ± 0.015	0.0066 ± 0.0045

Our analysis disfavor the simplest representation of the SI_{ν} mode

Simultaneous analysis of LSS and CMB

Probing Self-Interacting neutrinos with LSS observations, David Camarena

The difficulty of simultaneously fitting the CMB and galaxy power spectra employing the simplest neutrino self-interaction scenario relates to the S8 tension!

Takeaways

- Galaxy power spectrum also allows the SI_{ν} mode (it is not an incidental feature in the CMB).
- It is difficult to simultaneously fit the galaxy and CMB data (related to the S8 tension).
- The SI_{ν} mode could hint at a yet-to-be-discovered feature in the Early Universe.
- Our results motivates the exploration of more complex models.

Probing Self-Interacting neutrinos with LSS observations, David Camarena

It is crucial to bear in mind that radically different scenarios could provide a good fit to the cosmological observables!

11