Self-Interacting Neutrinos in Light of Large-Scale Structure Data

Rui An University of Southern California

Adam He, RA, Mikhail M. Ivanov, Vera Gluscevic, PRD 2024

Fundamental physics from future spectroscopic surveys, Berkeley, 05/07/2024

Neutrino Self-Interactions (vSI)

Mediated by a massive scalar
$$\varphi$$

 $\mathcal{L}_{int} = g_{ij} \bar{\nu}_i \nu_j \varphi$

Flavor-universal scenario

$$g_{ij} \equiv g_{\nu} \delta_{ij}$$

Self-coupling constant $G_{
m eff} \equiv |g_{
u}|^2/m_{arphi}^2$

N. Blinov et al. 2022

Cosmic Microwave Background (CMB)

- Free-streaming neutrinos travel through the photonbaryon plasma at early times
- Free-streaming neutrinos → Phase shift in the CMB power spectra towards larger scales and slight suppression of its amplitude
- Neutrino self-interactions delay the time at which neutrinos begin to free stream

Neutrino self-interactions shift the CMB power spectra peaks towards smaller scales and boost their fluctuation amplitude, as compared to the standard model

Matter Power Spectrum

larger *k*: modes enter the horizon **before** neutrino decoupling \Rightarrow Suppression of *P*(*k*) *k*~0.2 *h*/Mpc: modes enter the horizon **during** neutrino decoupling \Rightarrow Bump-like feature smaller *k*: modes enter the horizon far after neutrino decoupling \Rightarrow Same to standard one

Large Scale Structure (LLS) Probes

BOSS: anisotropic galaxy clustering data from BOSS DR12 at z = 0.38 and 0.61 (light grey) Lyman- α : 1D Lyman- α flux power spectrum from SDSS DR14 BOSS and eBOSS quasars (dotted line) DES: weak lensing data from DES-Y3 (dark grey)

Using effective field theory of LSS to model non-linear power spectrum [CLASS-PT, 2004.10607]

5

Baseline vSI Model

 $G_{\rm eff} + \sum m_{\nu} + 6$ standard parameters with fixed $N_{\rm eff} = 3.046$

Data set	$\Delta \chi^2 \text{ wrt } \Lambda \text{CDM} + \sum m_{ u}$	$\Delta \chi^2$ wrt $\Lambda ext{CDM}$
$\boxed{Planck \log -\ell \mathrm{TT}}$	-0.01	+0.09
$Planck$ high– ℓ	-0.90	-1.52
Planck lensing	-0.08	-0.18
BOSS	+0.38	-1.53
Lyman– α	-24.91	-26.02
DES	-2.78	-1.03
au prior	-0.14	+0.18
Total	-28.44	-30.01

The full data set strongly favors presence of a strong neutrino self-interaction, at $\sim 5\sigma$ level

Green: best-fit ν SI model from Planck+LSS analysis, while orange and blue correspond to smaller couplings Black: best-fit Λ CDM+ $\sum m_{\nu}$ model from Planck+LSS analysis All curves are divided by the best-fit power spectrum from a Planck-only analysis of Λ CDM Data Point: the slope measurement derived from Lyman- α forest, with a 2 σ uncertainty

 2×10^{0}

Observational Tensions

within standard cosmological model

S₈ Tension

Between CMB and LSS measurements

H_0 Tension

Between CMB and local measurements

8

Summary

• We use the effective field theory of large-scale structure to model matter distribution on non-linear scales within the self-interacting neutrino cosmology for the first time

CMB+LSS data set strongly favors the presence of a strong neutrino self-interaction

• The self-interacting neutrino model eases both H_0 and S_8 tensions

There is a preference for a non-zero sum of neutrino masses at the level of ~0.3 eV under this self-interacting neutrino model

To be further explored with the next generation of spectroscopic surveys!

Back up

FIG. 2: The evolution of the ψ gravitational potential (left) and of the gauge invariant dark matter density contrast d_c (right) for different k-modes as a function of redshift. Solid lines correspond to the interacting neutrino case with $G_{\rm eff} = 10^{-2} \text{ MeV}^{-2}$, $N_{\rm eff} = 3.046$, and $\sum m_{\nu} = 0.06 \text{ eV}$, whereas dashed lines correspond to the Λ CDM case. On the left, we plot $-3\psi/(2\zeta)$, where ζ is the gauge-invariant curvature perturbation. The lower left panel shows the normalized difference between the interacting neutrino and Λ CDM ψ potential, while the lower right panel shows the ratio of the dark matter fluctuations in the two models. The onset of neutrino free-streaming for the interacting neutrinos are still tightly coupled decay and appear damped at present relative to Λ CDM, while those entering the horizon during neutrino decoupling receive a net boost that persists until the present epoch.

C. Kreisch et al. 2019