Forecasts for Galaxy Formation and Dark Matter Physics from Dwarf Galaxy Surveys

CARNEGIE SCIENCE

Ethan Nadler Fundamental Physics from Spectroscopic Surveys 5/8/2024

Fundamental Physics on Small Scales

Credit: K. Bechtol

Fundamental Physics on Small Scales

Dark matter physics affects structure \bullet formation throughout cosmic history

- Matter distribution on scales smaller than ~1 Mpc is mostly unconstrained
- New surveys will probe clustering on dwarf and sub-galactic scales

Pathways to Innovation and Discovery in Particle Physics

Determine the Nature of Dark Matter

Snowmass Cosmic Probes of Dark Matter Report (2209.08215, incl. EN)

Mao et al. 2024 (SAGA Survey, incl. EN)

Census of the Faintest Galaxies

Cosmic Distances Intermediate Distances (25-40 Mpc) (≲ 200 Mpc) •• ٠ • • . *) • ••• ••• . S • **...** •• 77

distance

Symphony Zoom-in Simulation Suites

- 262 cosmological DMO zoom-in simulations spanning four decades of host halo mass
- Includes the first large suites of LMC and strong lens analog host halos
- Run with a unified simulation and analysis code pipeline; all data is publicly available!

web.stanford.edu/group/gfc/symphony

EN et al. 2023 (Symphony Team, 2209.02675)

→ concentration

Milky Way-est Zoom-in Simulations

- 20 high-resolution cosmological zoomin simulations of Milky Way-like systems
- All realizations include analogs of the LMC and Gaia-Sausage-Enceladus
- Provides high-fidelity predictions for the Milky Way subhalo population in CDM

Deveshi Buch (Stanford)

Buch, EN, Wechsler, Mao (2404.08043)

Empirically Modeling the Galaxy–Halo Connection

Theoretical uncertainties parameterized and fit to the data:

Physical Ingredient	Assumptions	Parameterization	Free Parameter?
Satellite Luminosities	Abundance match to GAMA survey	Non-parametric	No
	Extrapolate luminosity function	Faint-end slope α	Yes (α is free)
	Lognormal ($M_V V_{\text{peak}}$) distribution	Constant scatter σ_M	Yes (σ_M is free)
	Smooth galaxy formation efficiency	$f_{\text{gal}} \equiv \frac{1}{2} \left[1 + \left(\frac{\mathcal{M}_{\text{peak}} - \mathcal{M}_{50}}{\sqrt{2}\sigma_{\text{gal}}} \right) \right]$	Yes $(\mathcal{M}_{50}, \sigma_{\text{gal}})$ are
Satellite Sizes	Kravtsov (2013) galaxy size model	$r_{1/2} \equiv \mathcal{A} \left(R_{\rm vir} / R_0 \right)^n$	Yes (\mathcal{A} , <i>n</i> are free)
	Lognormal $(r'_{1/2} R_{vir})$ distribution	Constant scatter σ_R	Yes (σ_R is free)
	Size reduction set by stripping	$r'_{1/2} \equiv r_{1/2} \; (V_{\rm max}/V_{\rm acc})^{eta}$	No $(\beta = 0)$
Baryonic Effects	Nadler et al. (2018) disruption model	$p_{ ext{disrupt}} o p_{ ext{disrupt}}^{1/\mathcal{B}}$	Yes (\mathcal{B} is free)
Orphan Satellites	Correspond to disrupted subhalos	None	No
	NFW host + dynamical friction	$\ln\Lambda = -\ln(m_{\rm sub}/M_{\rm host})$	No
	Stripping after pericentric passages	$\dot{m}_{ m sub} \sim -\frac{m_{ m sub}}{\tau_{ m dyn}} \left(\frac{m_{ m sub}}{M_{ m host}}\right)^{0.07}$	No
	p_{disrupt} set by time since accretion	$p_{\rm disrupt} \equiv (1 - a_{\rm acc})^{\mathcal{O}}$	No $(\mathcal{O} = 1)$

EN et al. 2019 (1809.05542), 2020 (1912.03303), 2021 (2008.00022), 2024 (2401.10318)

Warm Dark Matter Forecsasts

Subhalo Mass Function Forecasts

Beyond-CDM Zoom-in Simulations

Rui An (USC)

Andrew Benson (Carnegie)

Vera Gluscevic (USC)

EN et al., in prep.

Beyond-CDM Zoom-in Simulations

Linear Matter Power Spectrum Forecasts

- For the first time, linear matter power spectrum reconstruction using dwarf galaxy populations is within reach
- Projected dwarf sensitivity to running *n_s* complements LSS on small scales
- Upcoming surveys will deliver large samples of low-z dwarfs, improving sub-Mpc clustering measurements

Predictions for Upcoming Surveys

- Rubin LSST will detect most remaining Milky Way satellites in the South
- Star-galaxy separation using Roman and Euclid will increase purity
- Continued spectroscopic follow-up is crucial to obtain dynamical masses
- Spectroscopic surveys are already complementing this effort (e.g., DESI LOW-Z: ~20k dwarf redshifts, z < 0.03)

Tsiane et al. in prep. (DESC Collaboration, incl. EN)

• First linear matter power spectrum reconstruction using dwarf galaxies is within reach

Dwarf galaxies are a key small-scale test of galaxy formation, dark matter, and inflation Understanding the dwarf galaxy-halo connection is a step toward discovery of new physics Smallest scale set by minimum galaxy luminosity; statistical error set by survey volume Robust theoretical modeling of dwarf galaxy data will bridge LSS and near-field cosmology

