Constraints on long-range neutrino selfinteractions from large-scale structure

Xuheng Luo

Johns Hopkins University

Fundamental Physics from Future Spectroscopic Surveys

Motivation

Vector Portal: A_D

Neutrino Portal: ν_R

Higgs Portal: Ф

 \mathcal{L}_{SM}

 \mathcal{L}_D : $\phi, Z', ...$

Dark Sector

- Light particle in the neutrino sector can raise long range interactions
- ♦ However ... long range force between neutrinos are weakly constrained
 - \diamond Neutrino scalar field interaction $g_{\nu\phi} \lesssim 7.7 \times 10^{-7}$ or $10^{47} \times$ Gravity [Berryman:2022]

Xuheng Luo (JHU)

May 7th

Motivation

Vector Portal: A_D

Neutrino Portal: v_R

Higgs Portal: Φ

 \mathcal{L}_{SM}

 \mathcal{L}_D : $\phi, Z', ...$

Dark Sector

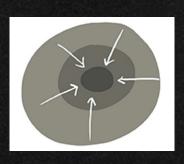
- Light particle in the neutrino sector can raise long range interactions
- ♦ However ... long range force between neutrinos are weakly constrained
 - ♦ Neutrino scalar field interaction $g_{\nu\phi} \lesssim 7.7 \times 10^{-7}$ or $10^{47} \times$ Gravity [Berryman:2022]
- \diamond Reason: long range interaction detection benefit from coherent enhancement ($N \sim N_A \sim 10^{24}$)
- \diamond Difficult to have large coherent enhancement for neutrinos in lab, hard collisions ($N_{\nu} \sim 1$)

Motivation

Vector Portal: A_D

Neutrino Portal: ν_R

Higgs Portal: Φ

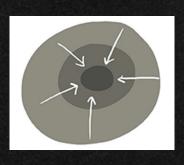

 \mathcal{L}_{SM}

 \mathcal{L}_D : ϕ, Z', \dots

Dark Sector

- ♦ Light particle in the neutrino sector can raise long range interactions
- ♦ However ... long range force between neutrinos are weakly constrained
 - \diamond Neutrino scalar field interaction $g_{\nu\phi} \lesssim 7.7 \times 10^{-7}$ or $10^{47} \times$ Gravity [Berryman:2022]
- \diamond Reason: long range interaction detection benefit from coherent enhancement ($N \sim N_A \sim 10^{24}$)
- \diamond Difficult to have large coherent enhancement for neutrinos in lab, hard collisions ($N_{\nu} \sim 1$)
- * Solution: looking for coherent interaction in the cosmic neutrino background $(n_v \sim 10^{75}/Mpc^3)$

Toy example: CvB in the Milky Way



- \diamond Typical velocity of CvB today (minimal mass): $v_{\rm v} \sim 10^{-2}$
- Jeans criterion: collapse happen if pressure induced gravity took over thermal pressure

$$\Leftrightarrow$$
 if $P_G \sim \frac{GM_V^2}{R^4} \gtrsim P_{th} \sim \rho_V v_V^2$

♦ For a R = 1Mpc radius sphere, total mass of neutrino is $M_v \sim 10^9 M_{\odot}$, $P_G \ll P_{th}$

Toy example: CvB in the Milky Way

- \diamond Typical velocity of CvB today (minimal mass): $v_{\rm v} \sim 10^{-2}$
- Jeans criterion: collapse happen if pressure induced gravity took over thermal pressure

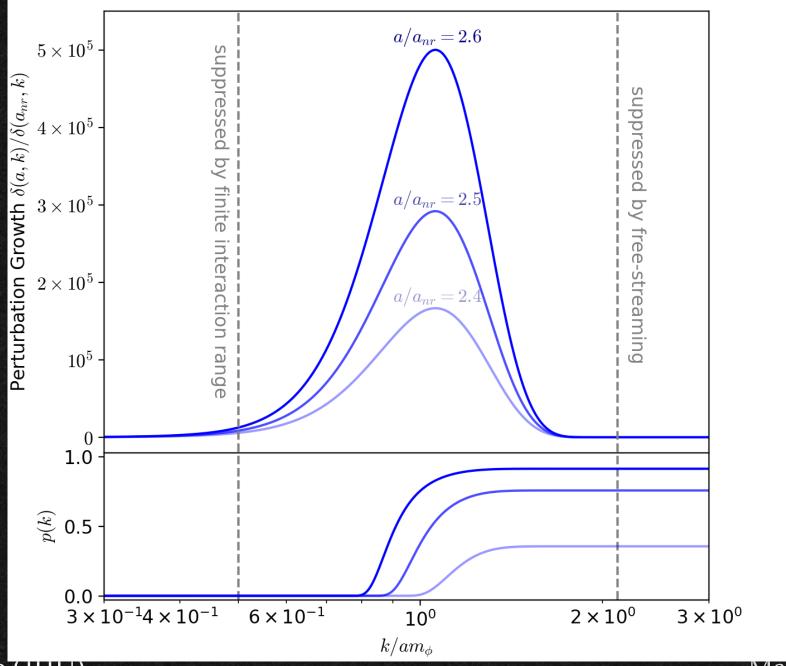
$$\Leftrightarrow$$
 if $P_{G} \sim \frac{GM_{\nu}^{2}}{R^{4}} \gtrsim P_{th} \sim \rho_{\nu} v_{\nu}^{2}$

- \Leftrightarrow For a R=1Mpc radius sphere, total mass of neutrino is $M_{\nu}\sim 10^9\,M_{\odot},\,P_G\ll P_{th}$
- \diamond Add coupling to massless ϕ , neutrino experience additional long-range force

$$\Leftrightarrow$$
 $G' = \frac{g^2}{4\pi m_{\nu}^2}, \ P_{G'} \gtrsim P_{th} \text{ if } G' \gtrsim 10^6 G$

 Statement: nonlinear bound state of neutrinos (νhalos) can form if long-range selfinteraction is too strong compared to gravity

Model Setup


$$\mathcal{L} \supset rac{1}{2} m_{\phi}^2 \phi^2 + m_{
u} ar{
u}
u + g \phi ar{
u}
u$$

- ♦ Regime of interest:
 - \diamond Coherent interaction: $m_{\phi} \ll n_{\nu}^{1/3}$
 - \diamond No short distance physics: $g \ll 10^{-8}$, early universe unchanged
- ♦ Well defined EoMs in the linear regime [Esteban:2021, Archidiacono:2022 ...]
 - ♦ Background evolution (analytical ✓ CLASS ✓)
 - ♦ Linear perturbation theory (analytical ✓ CLASS ✓)
 - \diamond Significant enhancement of neutrino perturbation ($\delta_{\nu} \gtrsim 1$)
 - ♦ Formation of nonlinear bound states (vhalos)

♦ Long-range self-interaction in fluid approximation

$$\ddot{\delta}_{\nu} + 2H\dot{\delta}_{\nu} = \frac{3}{2}H^{2}\left[\left(1 + \frac{G'}{G}\frac{k^{2}}{k^{2} + a^{2}m_{\phi}^{2}}\right)\Omega_{\nu}\delta_{\nu} - \frac{k^{2}}{k_{fs}^{2}}\delta_{\nu} + \Omega_{cdm}\delta_{cdm}\right]$$

- \Leftrightarrow Very fast growth mode $\delta_{\nu} \propto a^{\sqrt{\frac{3\Omega_{\nu}G'}{2}}} \gg a$ at $\frac{k}{a} \gtrsim m_{\phi}$, $\delta_{\nu} \sim 1$ within one Hubble time
- ♦ Scale dependent growth: exponentially suppressed at $\frac{k}{a} \leq m_{\phi}$
- Similar behavior found from CLASS
- \diamond Peaked structure formation at $\frac{k}{a} \sim m_{\phi}$ based on Press–Schechter formalism

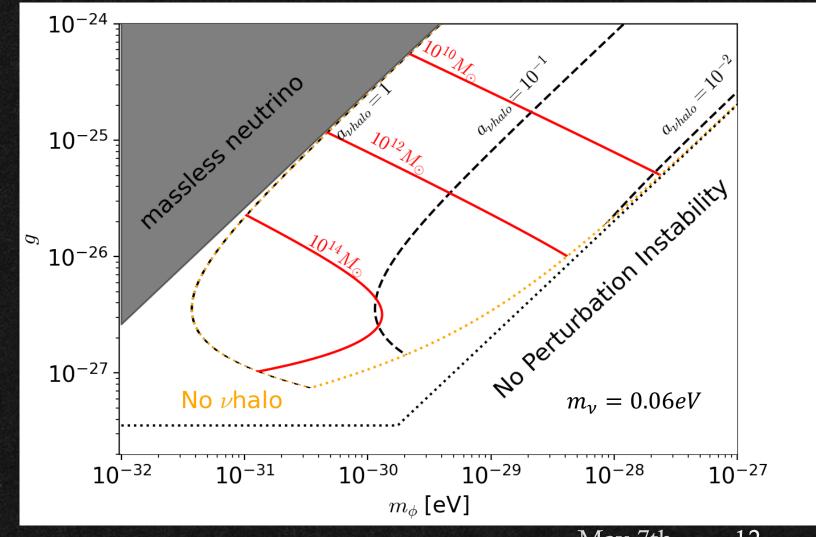
♦ Long-range self-interaction in fluid approximation

$$\dot{\delta}_{\nu} + 2H\dot{\delta}_{\nu} = \frac{3}{2}H^{2}\left[\left(1 + \frac{G'}{G}\frac{k^{2}}{k^{2} + a^{2}m_{\phi}^{2}}\right)\Omega_{\nu}\delta_{\nu} - \frac{k^{2}}{k_{fs}^{2}}\delta_{\nu} + \Omega_{cdm}\delta_{cdm}\right]$$

- \Leftrightarrow Very fast growth mode $\delta_{\nu} \propto a^{\sqrt{\frac{3\Omega_{\nu}G'}{2}}} \gg a$ at $\frac{k}{a} \gtrsim m_{\phi}$, $\delta_{\nu} \sim 1$ within one Hubble time
- \diamond Scale dependent growth: exponentially suppressed at $\frac{k}{a} \lesssim m_{\phi}$
- ♦ Similar behavior found from CLASS
- \diamond Peaked structure formation at $\frac{k}{a} \sim m_{\phi}$ based on Press–Schechter formalism
- \Leftrightarrow We assume $r_{vhalo} \approx m_{\phi}^{-1}$, $M_{vhalo} \approx 4\pi \rho_{v}/3m_{\phi}^{3}$ forms when $\delta_{v}(k=am_{\phi}) \approx 1$

model parameters (g, m_{ϕ})

1pt


- ♦ Long-range self-interaction in fluid approximation
- $\ddot{\delta}_{\nu} + 2H\dot{\delta}_{\nu} = \frac{3}{2}H^2 \left[\left(1 + \frac{G'}{G} \frac{k^2}{k^2 + a^2 m_{\phi}^2} \right) \Omega_{\nu} \delta_{\nu} \frac{k^2}{k_{fs}^2} \delta_{\nu} + \Omega_{cdm} \delta_{cdn} \right]$
- \Leftrightarrow Very fast growth mode $\delta_{\nu} \propto a^{\sqrt{\frac{3\Omega_{\nu}G'}{2}}} \gg a$ at $\frac{k}{a} \gtrsim m_{\phi}$, $\delta_{\nu} \sim 1$ within one Hubble
- \diamond Scale dependent growth: exponentially suppressed at $\frac{k}{a} \lesssim m_{\phi}$
- Similar behavior found from CLASS
- \diamond Peaked structure formation at $\frac{k}{a} \sim m_{\phi}$ based on Press–Schechter formalis
- \Leftrightarrow We assume $r_{vhalo} \approx m_{\phi}^{-1}$, $M_{vhalo} \approx 4\pi \rho_{v}/3m_{\phi}^{3}$ forms when $\delta_{v}(k=am_{\phi})$

onset of nonlinear $\delta_{\nu} \gtrsim 1$

Peaked structure formation

 $(a_{vhalo}, M_{vhalo}, n_{vhalo})$

- Very significant structure formation from neutrinos
- $\Leftrightarrow M_{\nu \text{halo}} \lesssim 10^{15} M_{\odot}$
- * a_{vhalo} : 1 \sim 0.01 $(v_v < 1 \text{ is required})$
- \Rightarrow But $\Omega_{\nu} \sim 0.5\%$
- How do we observe them?

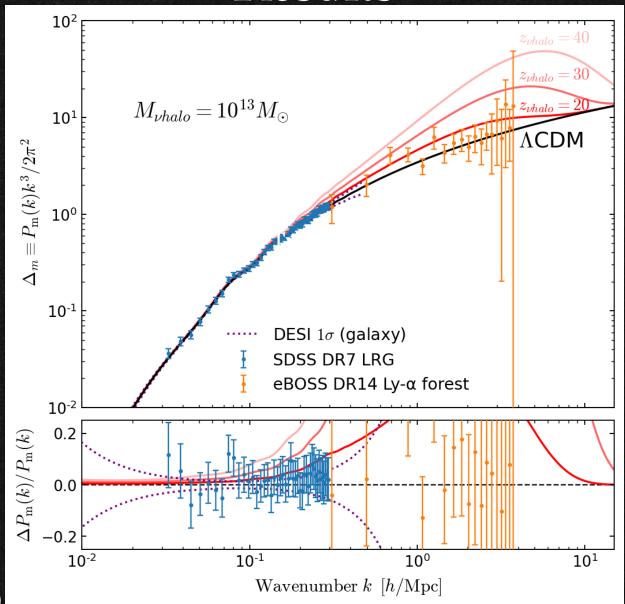
Impact on matter power spectrum

- \diamond Massive primordial black hole can enhance structure formation even with small abundance ([Afshordi:2003, Carr:2018, Inman:2019, Liu:2022]) $P_{pbh}=1/\bar{n}$
- vhalos are similar to massive pbhs at large scales
 - \diamond vhalos are bounded structure with size $r_{vhalo} \sim 600 kpc (\frac{m_{\phi}}{10^{-29} eV})^{-1}$, effectively a point mass at large scales
 - \diamond We assume the distribution of vhalos are uncorrelated at scale larger than interaction range
 - \diamond Distribution of vhalos are uncorrelated with dm (isocurvature)

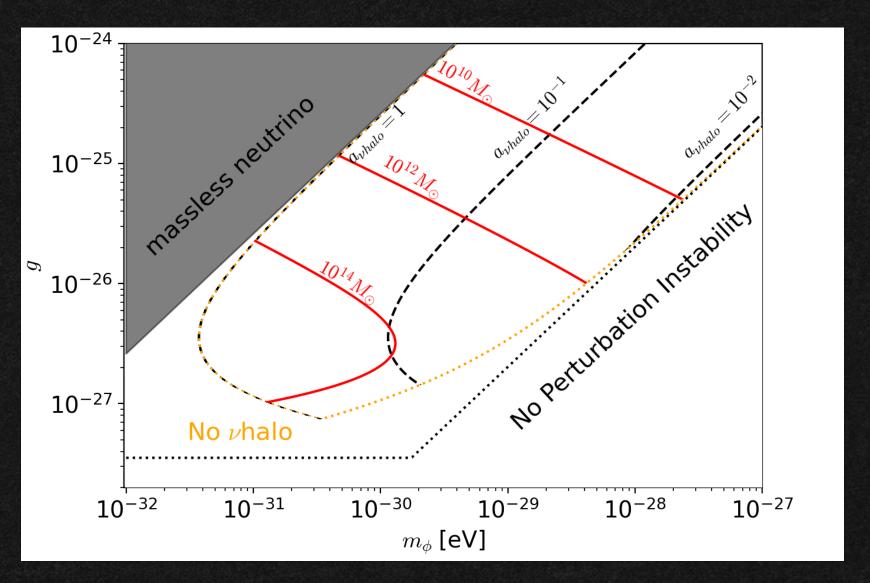
Impact on matter power spectrum

- * Massive primordial black hole can enhance structure formation even with small abundance ([Afshordi:2003, Carr:2018, Inman:2019, Liu:2022]) $P_{pbh}=1/\bar{n}$
- vhalos are similar to massive pbhs at large scales
 - \Leftrightarrow vhalos are bounded structure with size $r_{vhalo} \sim 600 kpc (\frac{m_{\phi}}{10^{-29} eV})^{-1}$, effectively a point mass at large scales
 - \diamond We assume the distribution of vhalos are uncorrelated at scale larger than interaction range
 - \diamond Distribution of vhalos are uncorrelated with dm (isocurvature)

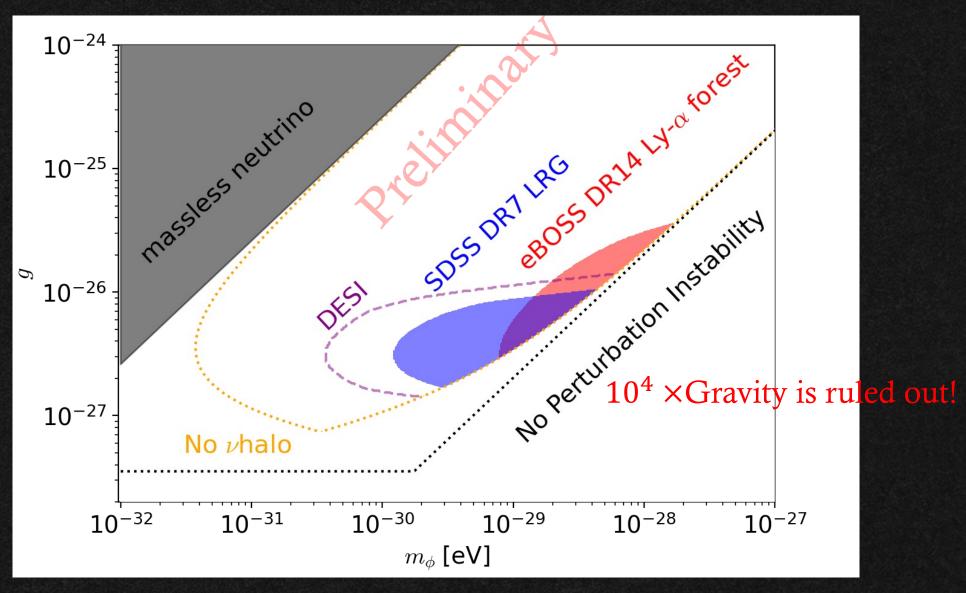
$$P_{m}(a) = D_{+}(a, a_{vhalo})^{2} (1 - \Omega_{v})^{2} P_{cc}(a_{vhalo}) + D_{+}(a, a_{vhalo})^{2} \Omega_{v}^{2} P_{vv}(a_{vhalo})$$


$$P_{vv} = 1/\bar{n}_{vhalo}$$

corrections need to be added at small scales


Results

Why O(1) effect on P_m is expected from $\Omega_v \approx 0.5\%$?


 $\delta_{\nu} \sim 1 \gg \delta_{cdm}$, at $z \sim 100$ $\rho_{\nu} \delta_{\nu} \sim \rho_{cdm} \delta_{cdm}$

Results

Results

Xuheng Luo (JHU)

May 7th

Summary

- ♦ Drastic impact on cosmic neutrino background from very simple extension of neutrino sector
- Early formation of massive bound states
- ♦ Significant impact on the matter power spectrum, scale dependent
- ♦ Potential cleaner argument in the DESI era: non free-streaming neutrino = ruled out

Xuheng Luo (JHU)

Thanks!

Xuheng Luo (JHU) May 7th 19