Constraining local primordial non-Gaussianity using long-wavelength modulation of local small-scale statistics

Fundamental Physics from Future Spectroscopic Surveys LBL, Berkeley

05/06/2023 Utkarsh Giri (UW-Madison)

Work done in collaboration with

Moritz Münchmeyer UW-Madison

 Kendrick Smith

Perimeter Institute

Based on 2305.03070, 2205.12964

Introduction/Gist

I will present two simulation based approaches for tightening constraints on f_{NL}

1a. A non-perturbative approach sensitive to f_{NL} via higher *N*-point functions.

- A *neater* formulation+use of position-dependent power spectrum approach (Chiang, Wagner, Schmidt, Komatsu 2014, Smith, Loverde, Zaldarriaga 2012, de putter 2018 and others)
- Very efficient from computational and modelling point of view
- Allows us to tap into very non-linear scales, outperforms some recent forecasts.

1b. A machine learning enhanced version of the above formalism.

• In principle sensitive to f_{NL} information in soft limits of all higher N+1 point functions

We harness large-small mode coupling feature of PNG universe + LSS consistency relation guarantees of Gaussian universe, to *derive a large-scale field* π^{f} *composed out of very non-linear density field, which has a clean fNL/k^2 bias similar to halos*

f_{NL} from LSS: Current status and motivation

The most promising method has been via the

PNG induced scale-dependent bias

$$P_{hh}(k_L) = \left(b_G + \frac{b_{NG}f_{NL}}{k_L^2}\right)^2 P_{mm}(k_L)$$

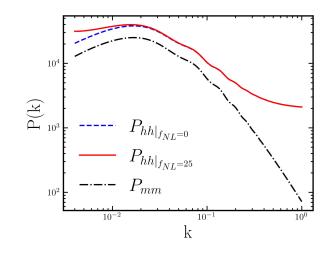
Additionally, B_{hhh} contains term $\propto rac{f_{NL}}{k_L^2}$

However, they are:

- Hard to model analytically beyond k ~ 0.2 h/Mpc
- Simulation-based approaches are computationally very challenging

SOTA: Pk + Bk constraints: $\sigma(f_{NL}) = \mathcal{O}(20 - 30)$ [Cabass et al. 22, D'Amico et al] Question: How much would a proper inclusion of higher N-point functions tighten constraints on f_{NL} ? How to best do it in a manageable way? (!! Several recent studies report constraints saturating around k ~0.3!!)

Cabass, Ivanov, Philcox, Simonovic, Zaldarriaga (2022), D'Amico, Lewandowski, Senatore, and Zhang (2022) and others



A non-perturbative approach

Main idea: 1/k^2 will appear in any field sensitive to small scale power

(Covered nicely by Oliver Philcox and Sam Goldstein's talk earlier)

Define a field π^{f} which is a measure of local power/variance for observable f

$$\pi^f(\mathbf{x}) = \left(\int rac{d^3\mathbf{k}}{(2\pi)^3} W(k)
ho_f(\mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{x}}
ight)^2 \qquad \qquad W^i(\mathbf{k}) = \left\{egin{array}{c} 1 & ext{if } k^i_{\min} < |\mathbf{k}| < k^i_{\max} \\ 0 & ext{elsewhere} \end{array}
ight\}$$

f could be late time matter field δ_m or a tracer like the halo number density n_h

$$P_{m\pi^{m}}(\mathbf{k}_{L}) = \left(b_{\pi} + 2\beta_{\pi} \frac{f_{NL}}{k^{2}}\right) P_{mm}(\mathbf{k}_{L})$$
$$P_{\pi^{m'}\pi^{m}}(\mathbf{k}_{L}) = \left(b_{\pi'} + 2\beta_{\pi'} \frac{f_{NL}}{k^{2}}\right) \left(b_{\pi} + 2\beta_{\pi} \frac{f_{NL}}{k^{2}}\right) P_{mm}(\mathbf{k}_{L}) + N_{\pi\pi'}$$

sensitive to squeezed bispectrum & collapsed trispectrum

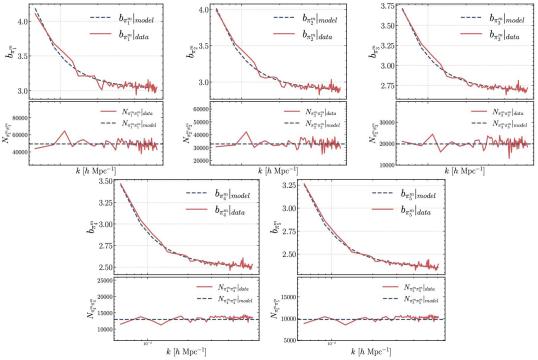
Testing our conjectures using simulations.

We use an ensemble of *Quijote & Quijote-PNG* (Villaesuca-Navarro et al 2019, Coulton et al 2022 Jung et al 2022) simulations

We generate π_i^m fields using disjoint top-hat filters $W^i(\mathbf{k})$ $k \in [(0.5, 1.0), (1.0, 1.5)...(2.5, 3.0)]$

We demonstrate that:

- The large-scale bias shows expected $1/k^2$ scaling.
- Noise is white as expected.



Constraining power

We perform likelihood analysis combining δ_m with π_i^m derived using disjoint tophat k-space filters in the range $k \in [(0.5, 1.0), (1.0, 1.5)...(2.5, 3.0)]$

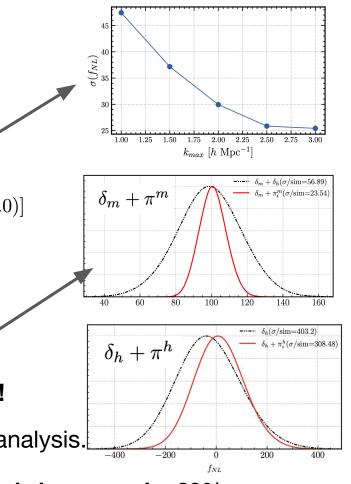
Relative improvement in $\sigma(f_{NL})$

We fix b_{NG_i} and marginalize over b_{G_i} and $N_{\pi_i\pi_j}$ $\delta_m + \pi^m$ constraints are **2.2x** times that of $\delta_m + \delta_h$

Constraints improve until very non-linear scales!!

 $\delta_h + \pi^h$ gives modest improvements over a halo only analysis.

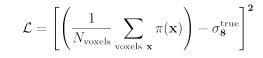
At M_{min} of $\sim 10^{13} M_{\odot}$, our non-perturbative analysis only improves by 20%

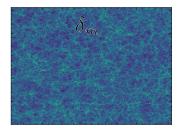


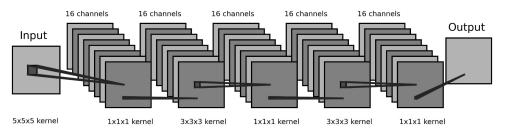
Part II: A Neural Network enhanced approach:

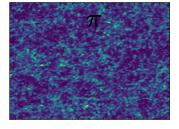
- Neural Networks (NNs) give very strong constraints on parameters like σ_8 and can potentially tap into the higher order information encoded in the density field.
- π^{f} modulation is not optimal, information has leaked into higher-order moments

We design a NN with small receptive field to learn π^{NN} field which locally estimates σ_8





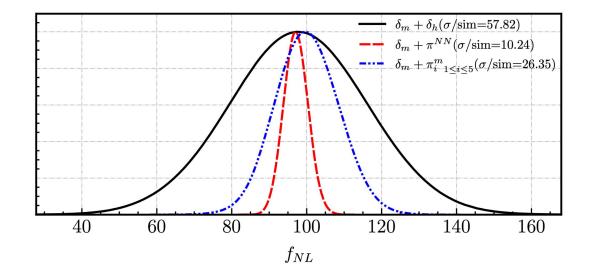




We use Quijote simulations with fixed cosmology but with varying σ_8 for training.

Results:

The $\delta_m + \pi^{NN}$ based analysis gives a **factor of 5.5** better constraint than $\delta_m + \delta_h$



Conclusion:

- We have presented a neat method for extracting information from soft limits of density fields, in particular *f*_{NL} information from squeezed bispectrum and collapsed trispectrum.
- We find significant f_{NL} sensitivity on *very* non-linear scales^{*}.
- Future surveys with *large area* + *low shot-noise* can exploit higher N-point functions in combination with power spectrum to further tighten constraints on f_{NL}
- Several interesting applications!

Interpretation and Validation

The bias model for π similar to that of δ_h

$$\pi^{NN}(\mathbf{k}_L) = b_{\pi}(\mathbf{k}_L)\delta_m(\mathbf{k}_L) + \epsilon$$

With

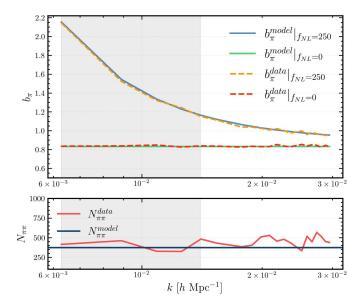
$$b_{\pi}(k) = b_{\pi}^G + b_{\pi}^{NG} \frac{f_{NL}}{\alpha(k,z)}$$

We evaluate this on "**unseen**, **non-gaussian**" sims o Recover $1/k^2$ scaling, constant noise for $k \rightarrow 0$

o Find ~100% correlation with matter field

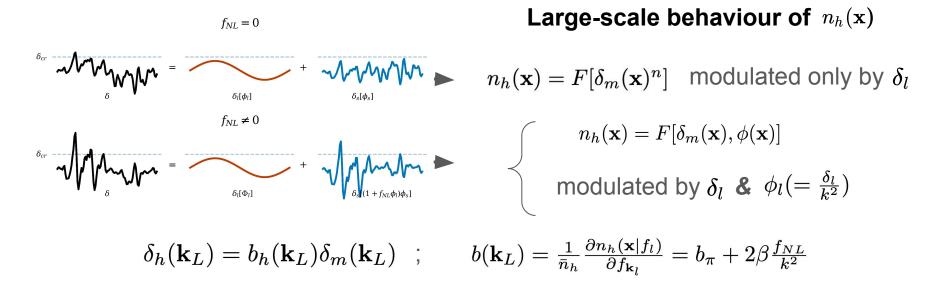
This is not a "black box" approach and is physics informed. We can do several field level null-tests; cross-correlate with noise maps. Also with other cosmological fields.

Robust $1/k^2$ scale dependence, can't be faked!



Origin of scale-dependent bias in halos

To motivate our formalism, we first look at origin of scale-dependent halo bias



Main idea: Similar modulation will appear in any field sensitive to small scale power