Kinematic Lensing with DESI Probing S_8 **Tension at very low Redshift** Jiachuan Xu, Arizona Cosmology Lab,

Pranjal R. S. Yu-Hsiu Huang Hung-Jin Huang Elisabeth Krause Tim Eifler Jiachuan Xu Eric Huff Spencer Everett

University of Arizona

Weak Lensing of Galaxies

- Core probe for dark energy of future missions (Euclid, LSST, Roman)
- Concern 1: Shear and shape degeneracy \rightarrow irreducible shape noise $\sigma_e \approx 0.27$ per component (S/N~0.01 per gal)

Observed Galaxy Density [1/arcmin²]

 Concern 2: Systematics (shear and redshift measurement uncertainties, intrinsic alignment, baryonic physics, etc.)

Survey Area [deg²]

Image credit: Tim Eifler

Kinematic Lensing concept

- Largest source of WL shape noise is unknown intrinsic galaxy shape
- This can reduce shape noise significantly (a factor of ~ 10)

Kinematic Lensing

Huff+13, Xu+23, Pranjal+23, Huang+24, Gurri+20, DiGiorgio+21, Morales 06,...

For disk galaxies: spectroscopic information allows us to constrain intrinsic ellipticity

Inclined x no shear

How to measure KL with DESI?

- different parts of galaxies
- Legacy Survey (possible synergy from LSST coverage)

Similar to the DESI peculiar velocity survey (Saulder+23): put multiple fiber points at

We want many bright, well-resolved, disk galaxies \rightarrow start from BGS, with imaging from

How to measure KL with DESI?

- different parts of galaxies
- Legacy Survey (possible synergy from LSST coverage)

• Similar to the DESI peculiar velocity survey (Saulder+23): put multiple fiber points at

• We want many bright, well-resolved, disk galaxies \rightarrow start from BGS, with imaging from

How to measure KL with DESI?

- different parts of galaxies
- Legacy Survey (possible synergy from LSST coverage)

Similar to the DESI peculiar velocity survey (Saulder+23): put multiple fiber points at

• We want many bright, well-resolved, disk galaxies \rightarrow start from BGS, with imaging from

Potential Science Case: Probing S_8 tension at very low-z with DESI-KL

- There is an emerging tension between high-z and low-z S_8
- If tension is real, it will likely to be prominent at very low-z.
- Standard WL are insensitive to very low redshift structures
- KL has lower shape noise → enables lensing measurements at very low-z
- DESI-KL science idea: Measure the the matter density fluctuations $\sigma_8^{\log -z}$ for $z \le 0.15$ and σ_8 for z > 0.15.
- redshift structures

Cosmic Microwave Backgrou Planck ACT+WMAP	nd Pla Aio
Cosmic Shear DES HSC KiDS	Am Hika Asg
Projected Clustering and Let $DES \times DES$ $BOSS \times HSC$ $unWISE \times Planck - \kappa$ $LOWZ \times DES/KiDS$	nsing Porred Miyata Krolewa thi
Shear, Clustering and Lensin DES×DES BOSS/2dFLenS×KiDS	g Abbo Heyma
Redshift-Space Clustering BOSS BOSS LOWZ	Ivan Philo thi
Redshift-Space Clustering an $BOSS \times Planck-\kappa \longrightarrow LOWZ \times DES/KiDS \longrightarrow$	d Lensing Ch thi
Cluster Counts ROSAT Planck-SZ SPT DES	Mar Pla Bocqu Abbo
0.5 0.6 0.7 0.8	0.9
Lange+23 $S_8=\sigma_8\sqrt{\Omega_{ m m,0}/0}$	0.3

Forecasts: Galaxy Sample Definition

Forecasts: DESI-KL Average Shape Noise

- We build a forward modeling pipeline to generate mock image+spectrum, and estimate shape noise accounting for realistic S/N and instrument capabilities.
- Depending on galaxy sample, the shape noise varies among 0.04~0.08.
- The overall cosmic shear shot noise is similar to LSST Y1 level.

Xu+ in prep.

Summary

- 10x reduction in shape noise can compensate for reduced galaxy density.
- KL is robust towards traditional WL systematics.
- Competitive $\Delta \sigma_8^{\text{low}-z}$ constraints feasible with DESI-KL: potentially comparable with LSST Y1/Y10 depending on DESI galaxy sample considered
- Highly synergistic with LSST in terms of footprint, but also in terms of measurement in the overlap regions
- peculiar velocity measurements or dark matter studies with dwarf galaxies

• Imaging + galaxy kinematics breaks the degeneracy of intrinsic galaxy shape and shear.

• DESI-KL will benefit all lensing based science ideas at low-z, e.g. joint analysis with