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@ Why do we use/need lattice QC.D?
@ What s lattice QCD?
@ Some detarls of Lattice QF T

@ Some select resulls

some slide material borrowed

from Andrea Shindler, MSU



Why do I use lattice QCD?

@ Understanding Nuclear Physics from QCD

@ /esting the Standard Model at low-

energy n nuclear environments



 Nuclear Physics from QCD
‘QCD 15 1 he fundamental theory of the strong interactions

y X f 5., AZ)CDGF>

( My My M

E(Z) = A CD X f £ ’ 9
N’S ¢ N:245\ Agep’ Aogep’ Agep

N these energy levels range from a few Rel to
MeV to many GelV

We would like to understand the spectrum and
transitions/reaction rates in nuclear physics directly

from QCD



- Nuclear Physics from QCD

‘T/zere are well known fine-tunings in nature thcuf /zcwe a
swnificant impact on our existence

M, — M,, Bg, triple alpha process and e

How sensitwe are these fine-tunings to vanations of
fundamental parameters in the Standard Model?

How sensitwe 1s the Unwverse as we know 1t to
varations n these fundamental parameters?

sl 11¢¢d a solution to QCD



@ What is the weak fusion rate
p+p—d+uv.+et

as a function of parameters in the Standard Model?

@ What 15 the composition and equation of state of dense
nuclear matter in neutron stars?



Q@ [liese are examples of understanding QCD to connect
interesting nuclear physics to the fundamental theory

@ [ here 1s another very compelling reason - depending on
your taste - you will find more or less compelling (or the
same, like me)



Testing the Standard Model at low-energy

‘ Wath the dzscovew of the Higgs boson, the Standard
Model (SM) 15 now complete

@ However, the LHC has turned up no hints of any
physics beyond the Standard Model (BSM)

@ Further, there is almost NO terrestrial expervmental
funts for any physics BSM

the exceptions: muon anomalous magnetic moment
proton radius puzzle



Testing the Standard Model at low-energ)

‘ muon anOmalous magnetic moment

the numenrical size of the discrepancy between theory and experiment 1s the size of a
one-loop SM correction

T hus makes 1t difficult to understand this coming from high-energy BSM physics -
as there 1s no room wn any other SM comparison _for a correction the size of one-
loop electro-weak

could the BSM physics come from weakly coupl z/zt degrees of freedom?



@ proton radius puzzle

the discrepancy between the quoted value of the proton
charge radius (2 = 252

E

00Q?

Q?=0

PROTON

New value for charge radius
of key subatomic particle

T he determinations of this quantilty have been put under extreme scrutiny - while
the resolution 1s still a mystery - 1t 1s fawr to say many people working on this
subject suspect the systematics in e-p are underestimated



@ /ugh-energy physics colliders are one way to search for
BSM physics - but 1t 1s not clear this will be possible
n the near future
this helps emphasize the important role low-energy

precision nuclear physics can play in searching for new
physics (in addition to muon g-2 and proton size)



~lesting the Standard Model at low-energy
C While we /mve 1o a’zrect wnﬁrmatzon of any BSM

physics - we have very strong indurect evidence:

i :_//("/7/// Distributien % the Clucverse
A= . |

4.()“0

;

EVERYTHING ELSE;
INCLUDING ALL STARS;
PLANETS, AND US




esting the Standard Model at low-energy

‘ 1o the best of our /mawlea’ge zf/ze SM matter in t/ze Umverse 1S

comprised entirely of matter and not anti-matter

A measure of the excess matter in the Universe 1s gwen by the
primordial ratio of the number of baryons to photons - from
the CMB, we know this number to be

XN

~ 6.2 x 10719
X, :

1 =

However, the SM 1s nearly symmetric in matter and anti-matter.

While this observed asymmetry 1s small, 1t is larger than
predicted by the SM



‘ Yb pma’uce a matter/ anti-matter aymmet@}, we neea’ zf/ze t/nfee

Sakharov conditions:
— baryon number violation

— CG-symmetry and CP-symmetry violation
— nteractions out of thermal equilibrium

C.P vwlation implies permanent electric dipole moments

(EDMs) for SM fermaons. 1 here are significant experimental
efforts to search for permanent electric dipole moments in
electrons, protons, neutrons, deuterium, ... "V’ Hg, **°Ra,

In order to relate constraints/measurements on permanent

LDMs in nucleons/nucler to BSM physics,

we must be able to solve QC.D!



What 1s lattice QCD?

Introduction to
Quantum Field on a

Lattice

Introduction to Quantum Fields on a Lattice  my favorite formal introduction
Jan Smit
Cambridge Lecture Notes in Physics, 2002

Quantum
Chromodynamics

on the Lattice

Quantum Chromodynamics on the Lattice good practical intro to lattice
T Christof Gattringer & Christian B. Lang QCD
Springer, 2010

Lattice QCD for novices get your hands dirty with your
Peter LePage laptop
arxiv.org/abs/hep-lat/0506036

Advanced Lattice QCD if you want to know more
Martin Luscher
arxiv.org/abs/hep-1at/9802029



http://arxiv.org/abs/hep-lat/0506036
http://arxiv.org/abs/hep-lat/9802029

' Loch = —ZFSVFC‘LW + Z @f(a:) {iv“ [(% - z'gAZT“] = mf} V()

Vi () ZA@ 0T Fo, = 0,A% — 0,A% — gf*™A> A

quarks gluons field-strength tensor

® The only free parameters are the gauge
coupling g and the quark masses mymy,...

@ QCD is thus an extremely predicting
theory, if only we could solve it...



' Loch = —ZFSVFC‘LW + Z @f(a:) {iv“ [(% - igAZT“] = mf} V()

Vi () ZA@ 0T Fo, = 0,A% — 0,A% — gf*™A> A

quarks gluons field-strength tensor

@ There are two important symmetries that will help
understand the strong interactions

@ gauge symmetry of QCD

@ approximate chiral symmetry involving the light quarks



QCD

‘CgCD = Z @f(x) i7" Dy — my| by ()
f =150 a5

= Y1, (2)iy" Dpr (@) + Y (@) Dutbr(@) + ¥ (x) myr(e) + Yp(z) mir (o)

(in the second line, I have suppressed the flavor labels, f)

L ik
YL = : Y YR = 5 (0

@ In the limit the quark masses go to zero, m -> O, QCD would
have an exact chiral symmetry as the left and right handed
modes would decouple from each other. For the lightest two
quark flavors, u & d, QCD is perturbatively close to having this
chiral symmetry. This would be an SU(2).xSU(2)r GLOBAL
symmetry.
® GLOBAL = rotate all u fo d and d to u quarks in the universe

simultaneously and the physics is invariant

W = (Z) W — 3 %q) = |cos(0/2) + isin(0/2)0,74 | ¥



QCD

Loop= Y Ps(@)[iv* Dy~ my] vs(z)
f =150 a5

= Y1, (2)iy* Dytpr (@) + P (@)iy" Dutpr(x) + ¥y (2) mr(e) + Pp(z) mir ()
(in the second line, I have suppressed the flavor labels, f)

Tl Hode
i

1_
(oo 7§06 Yr = Pry e QWB,PR

o If this approximate chiral symmetry were realized in nature,
then we would observe a near degeneracy in the spectrum.
The negative parity nucleon would have nearly the same mass
as the nucleon, with small perturbative corrections due to the
finite u,d quark masses, but:

mpy =~ 940 MeV my+ ~ 1535 MeV

@ The expected degeneracy arises because the parity operator,
which includes v4, flips the P. <-> Pr projectors



QCD

Loop= Y Ps(@)[iv* Dy~ my] vs(z)

=11 Tl e
= Y1, (2)iy" Dpr (@) + Y (@) Dutbr(@) + ¥ (x) myr(e) + Yp(z) mir (o)

(in the second line, I have suppressed the flavor labels, f)

g — 1_2%1@ (05

£ a0t
- 2

P

® We also observe that all hadrons made of u,d quarks have
masses >= 770 MeV, except for 3: z*t = #°

m.o ~ 135 MeV m. .+ ~ 139 MeV

® What are these three light particles doing in the spectrum and
why do we not observe a near degeneracy in the parity
partners in the spectrum?



QCD

‘C’zb)C’D i Z @f(x) iy Dy — mg| Yy (@)
f =150 a5

= Y1, (2)iy" Dpr (@) + Y (@) Dutbr(@) + ¥ (x) myr(e) + Yp(z) mir (o)

@ This reminds us of spontaneous symmetry breaking. If a global
symmetry is spontaneously broken, there must emerge a
Nambu-Goldstone mode which is a massless excitation

@ In our case, we have an approximate
global symmetry. We postulate that the
QCD vacuum spontaneously breaks this

approximate global chiral symmetry down
to the vector subgroup:

Qocp)

@ In our two flavor considerations, this SU(2)y group is the SU(2)
of Isospin proposed by Heisenberg



QCD

‘C’zb)C’D i Z @f(x) iy Dy — mg| Yy (@)
f =150 a5

= (@) Dytpr(x) + D p(2)in" Dupr(z) + vy (@) myr(@) + Y p(z) mir(2)

Qgcp)

® We began with 3+3 generators of the
symmetry (3 Pauli matrices for L and R
SU(2)), but end with only 3 generators of
the unbroken symmetry, SU(2)v.

@ The vector subgroup is parity-even, so we therefore expect to
observe three nearly massless parity-odd spin-0 particles in the
spectrum (the massless Nambu-Goldstone modes acquire a small

mass from the non-zero values of the ud quark masses) - these
are the pions.

@ Our understanding of low-energy QCD is heavily based upon
this realization of the approximate chiral symmetry.



Feynman Path Integrals
= / DA, D+ D1pe*>cP Socp = / d*zLocp
(Q]O(y)O' (2)|2) = / DA, Dy D500 0(y)O' (x)

@ The path-integral gives us a relation between matrix elements of
operators and a high dimensional integral over field configurations.

@ We know how to do the integral on the right (in principle at least).
The beginning of lattice QFT is to discretize the universe so that
we can compute the path-integral representation directly with a
computer.

@ Suppose we chop the universe info size |a

32 x 32 x 32 x 64 = 221

@ our path integral goes over all field
configurations on all sites, n®> terms!




Feynman Path Integrals
:/DAMD@DD@JSQCD SqQcp Z/d4$£Q0D

QUOWO!@)|2) = 5 [ DA, DD 0()0! (@)
How can we actually perform this integral?

If we Wick-rotate to Euclidean time, t -> itg, then we have

(QO(yr)O! (25)I0) = /DA DyDpe=%aep O(yp) O (z)
For zero quark chemical-potential (zero baryon chemical potential)
e~ 5ecp ¢ R

We can use this factor as a probability measure to importance
sample the integral with Monte-Carlo methods for those field
configurations that minimize S/,



Feynman Path Integrals

(Q|O0(yp)O! (25)|2) = /DA DyDpe S0cr O(yp)Of (z5)

® We can make Nc¢q different samples of the field configurations
and then our correlation functions are approximated with finite

statistics E
% - 1 ctg % | liey . 2
QUO(ye)ONwe)I) = N < 3 (QAOWws)AL i, B0 () (A 6D,
e CoL

(AL, ;] = the i value of the fields on “configuration” i

@ At finite statistics (finite Nceg) we will have an approximation to
the correlation functions with some computable statistical

uncertainty that can be systematically improved (with more
computing time)



Feynman Path Integrals

(Q|O0(yp)O! (25)|2) = /DA DyDpe S0cr O(yp)Of (z5)

What do we expect our Euclidean spacetime correlation functions
to look like? Let us take xg=0 (without loss of generality -
translation invariance lets us do this) and ¥r = 0 for simplicity

C(t) = (Q|O(¢,0)01(0,0)|2)
@ Insert a complete set of states
1=) [n){n

= Z Qe O(0)e~ ! |n) (n|OF(0)|2)



Feynman Path Integrals

(Q|O0(yp)O! (25)|2) = /DA DyDpe S0cr O(yp)Of (z5)

C(t) = (Q|O(t,0)0'(0,0)|2) ZZZT L

= AOB_EOt 1+ Z An g A not

'n,>0 .

An == ZTLZ?]; A’n,O = En X EO

@ In the long Euclidean time limit, the excited tower of states
becomes exponentially suppressed compared with the ground
state, Eo. For simple quantities like the spectrum, we do not need
to worry about calculating in Euclidean time rather than
Minkowski fime.



Feynman Path Integrals

C(t) = (Q|O(t,0)01(0,0)|2) ZZ AL

= Aoe_EOt 1+ Z An e~ Anot

n>0

@ We use a derived quantity, the effective mass, to help
understand our numerical calculations:

Mepf(t,T) = %ln (O((i (j)f)>

— 111
Age—Eo(t+7)(1 4 A1/AQe~A10(t+7) 1 ...

1 BT P e VA oA
Sy E() 4+ — lIl 2k 1/ Y Y
- TR Al/Aoe—Am(t—l—T) 0

T




Quark fields

(@ + m] (x)(0) = 69 () P()(0) = S(z,0)

Euclidean free-quark two-point function

1PT

d*p e
(27T)4 1 p+m

$(2)5(0) = |

/7; Eaid 7 {%m Yo f = 20,0

DT =DPoxo T+ PrLTk ]5 = YoPo T VkPk



Quark correlator

/d?’x S($,O):/d3$/ ok /OO TR SR 1 .
) oo 20 PPt m2

Ta >V

/dgaz S(z,0) = P el

1
P =51+ )



Lattice Path Integrals

® Now we need to construct discrete versions of our fields.

7T/CL d4p

v@) = | SR d0)

' a
~

CU'I'OFF |p,u| = g

r = a{ng, N1, Ny, N3) s

Y(p) =a* ) e PTy(z)



Derivatives

\ N\ A\
Z p,up,u,

. ey ap
At (7>



Doublers

| T D
i p+m P4+ m?2
= —z’gob m
SmQCEgpu) pr
2 a |D° +m?
wip) = aasinh 5\/—1 3

Additional states with
energy = mass!

@ each naive fermion we add really has Qd states in d dimensions



Doublers

@ Why do we get these doublers?

@ It is because of the Dirac equation having only a single derivative
for fermions:

] T
V=50 +0) vm:wx au)Qaw(x ajl)

@ Our difference operator can not distinguish between the lowest and
highest energy modes allowed. This does not happen for bosons

oz +afi) + ¢(x — ajt) — 2¢(z)

00, =




Wilson-Dirac operator

1 . lsth
Dy = Z 3 [fyu (8; —- 8#) — CL@Z@ILJ —54 D+ §ap2

Free-quark two-point functions







Wllson term

Dy = Z i (95 + Op) = 0,0,

® The Wilson term is |rrelevan’r in the conhnuum limit
ap00,p @ dimension 5 operator, so coefficient must have

dimension -1 to include ([a] = -1) in the Lagrangian
@ irrelevant = vanishes in continuum limit
@ The Wilson term breaks chiral symmetry!

@%ﬂﬁ i E’V,uwll i3 w_R7u¢R @3:23“1? e EazauwR ot %5’Z%¢L

@ The Wilson operator will mix non-perturbatively with the quark mass
operator Yvm) = Pprmipr + Yrmir

@ The input quark mass receives LARGE additive correction from
non-perturbative effects from Wilson operator - FINE TUNING BY
LQCD practitioner to get light physical quark masses



Chiral Symmetry on the lattice

@ Constructing a lattice action that respects chiral symmeiry is
challenging (1-2 orders of magnitude more expensive)

@ define lattice-chiral symmetry: Ginsparg Wilson relation
@ Domain-Wall Fermions

@ Overlap Fermions



Gauge fields

Gauge transformations
p(z) — AMa)p(z)  Alz) € SU(3)

Covariant derivative in the continuum
D, () = (0, + Au(x)) ¥(z)

Au(@) — A@)Au(@)A(z) " + A(2)0uA(z)

Dyp(z) — A(z) [Dpip(z)






Lattice covariant derivatives

0,(w) = — [( + aft) - Y(z)

(MG + ap)i(e + o) ~ Ax)i(o)
Need gauge connection
Ul(x, n) € SU(3) Uz, p) — Alz)U(z, wWA(z +app)

Covariant derivatives

Va(e) = - (U, p)b( +ap) — bz

Vuh(z) — AMz)V ()




|

|
x
S
=

&

|

-
:§>
=
&
=

&

|

=)
=

V¥ ()

=> gauge covariant Wilson-Dirac operator

Dw = Z G, AVASTAVINEC v

An SU(3) lattice gauge field is an assignment of a matrix
Uz, 1) € SU(3) Ty

to every link (z,2 + aft) on the lattice




Wilson lines

x x+afl
x+afi-aV
x+aji+av

Uz, w)U(z + aft, v) ‘ I

x x+afl

Plaquette

Uz, p)U(z + afp, v)U(z + av, p) = U(a,v) ™




Wilson lines

U(x,y;C) Ordered products of Us

Uz, y;C) — Az)U (=, y; C)A @)™

For any closed curve the Wilson loop

W (Cl=tr i e

IS gauge invariant and independent of x



Lattice and continuum gauge fields

How do we approximate a continuum
gauge field by a lattice gauge field?

Uz, 9,6). = Mz)U(z, y; C)A(y) 7

In the continuum the “gauge transporter”

£ N

1
G(x,x + aft) = Texp « a/ UT A, (& U
0

/

\

Gz, z e/l —eA (@ Gl g e R )

Lattice gauge field = gauge transporter



Lattice and continuum gauge fields
U(z,z + aft) = G(z,z + afi) + O(a)
Introduce algebra-valued gauge field

Uz, pn) =exp{ad,} ~1+aA,(x)+ O(a?)

——

V,b(@) = - [(1+ ad, @)z + 1) ~ (@) + Oa) =

(Op + Aplz)) ¥(x) 4 O(a)



Gauge invariant local fields

Quark bilinears

p(@)p(z) V(@) Y(@) (@) ()

V(@)1 Vo(z) @)V V() ¢(x)U(z, py(z + af)

Plaquette and rectangle fields

P, () ="Re 4r | EENCAGE 0

R, = Re tri{fiis Ui = ey




Classical continuum limit

O(x) Vo Z a’O,, (&

O, (z) Gauge invariant polynomial of (z), ¥(z), Au(z)
4 and their derivatives of dim=n

Examples

U, 2; = —%afltr Fo (28, (8 %a5tr (Fy(z) (Dy+ D)) Fyp ()] + -+

R, (x) = —2a%r [F,,(z)F,.(z)] + -



@ Lattice fields can be classified by their leading
behavior in the classical continuum limit

@ Any gauge-invariant, local continuum field can be
represented on the lattice

@ The representation is not unique <==> many lattice
representations for a local continuum field



Lattice QCD action

Wilson 1974
S S 9

Sa = %ZZPMV(:B)

T,V

St Z@(w) Dw + M| y(x)

X

1 ; i
L — 5 v (Vy + VM) e aVMV,J



Other lattice actions

1
S = % Z Z co PP, el Ci e, () o Edcie 1

g HERR 11

® The differences are of order ¢? in the
classical continuum limit

@ Additional terms can be added and the
coefficients funed to improve the
convergence to the continuum limit



Infegra’ring the fermion fields

Ze = [ DWID 7] exp {~Sw [V . 4]} SW—CL4Z¢ [Dw + M]9(x)
This integral is quadratic in the fermions, "so we can directly do
the integral

Ny

= det [Dy + M] = | | det [Dw + m,]

g=1

ZQCD e /DUMdet [DW —+ M] e_SG[Uu]



Quark contractions

1
Dw + M| S(z,y;U) = —0zy Quark propagator
a

and
correlation function

(@)Y (Y))p = S(z,y;U)
<¢($1){5(y2)¢(x2)@(y2)>17 = S(CEL Y1, U)S(.CIZ‘Q, Y2 U) e

Ny

(@1(z1) * + - Pn(@n)) = —/D (p1(21) -+ @n(xn)) g | [ det [Dw + myg] exp {—Sc[U]}

g =3

Pion correlafion function
(@(x)ysd(x)d(y)vsuy)) p = =tr {15Saa(, y; U)¥sSuu(y, 2;U)}

==> now only bosonic inftegral




Regularity
In a finite volume

@ The space of gauge fields is compact

@ After fermion fields are integrated out
one is normally left with a bosonic
intfegral

==> the correlation functions are well defined
==> lattice QCD provides a non-perturbative
reqularization of QCD



Gauge Invariance



Space-time symmertries

Correlation functions are invariant

@ Translation by lattice vectors
@ Space-time rotations H(4)

@ continuous rotational symmetry O(4) is
broken down to hypercubic rotations

@ Charge conjugation, [parity, time-reversal]



~lesting the Standard Model at low-energy
C While we /mve 1o a’zrect wnﬁrmatzon of any BSM

physics - we have very strong indurect evidence:

i :_//("/7/// Distributien % the Clucverse
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If Dark Matter couples to the
scalar current of the nucleon (eg
via Higgs) Spin Independent cross

section

2 7
soclfP f=gts > o

q=u,d,s

¢ = WimeaqlN)

my

see eg. Cheung, Hall, Pinner, Ruderman
arXiv:1211.4873

with enhancement of A? for
nucleus (Xenon)

scalar current difficult to
measure experimentally

fu,d estimated from pion-
nucleon scattering

Js  uncertainty dominates
estimates of cross section

Ellis, Olive, Savage
Phys.Rev. D77 (2008)



If Dark Matter couples to the
scalar current of the nucleon (eg
via Higgs) Spin Independent cross

section ) .
2 _ |
0 X ‘f‘ f o 9 | 9
_ <N\mqq_q\N>
fq =
mn

see eg. Cheung, Hall, Pinner, Ruderman
arXiv:1211.4873

N
S 020

2. i

q=u,d,s

figure adapted from arXiv:1211.4873
thanks to J. Ruderman and collaborators
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P. Junnarkar and

strange content of the nucleon 301 1114

Lattice QCD perfect tool to compute strange content of
nucleon m (N |5s|N)

Feynman-Hellmann Theorem  mg{(N|qq|N) = mq7—mn
omy

0.92 , | , | ' | | systematlic 0.92

! ¢ ¢ /prot/m030mO030_20x64/px0py0pz0 '
0.90:— —:0.90

= | 1 |
“'\ 0.88 ] i -.0.88

~ 1

o 1 =
0.84 | -:0.84

@ ] 5 |
0.82 I S 10 7 14 16 18000 007 013 020°7
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P. Junnarkar and

strange content of the nucleon 301 1114

Lattice QCD perfect tool to compute strange content of
nucleon m (N |5s|N)

0

omy

Feynman-Hellmann Theorem mq<N|§q|N> — My my

amgghys
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P. Junnarkar and

strange content of the nucleon 301 1114

Lattice QCD perfect tool to compute strange content of
nucleon m (N |5s|N)

0

Feynman-Hellmann Theorem  mg{(N|qq|N) = mq7—mn
omy
fs
—— 0.063(11) [21]ny =2+1
3 — = 0.032(25) [14] ns = 2
E R 0.012(1)  [16]ny =2
35 - 0.014(06) [171n;=2+1+1
— - 0.048(15) [18] ny =2+ 1
5 0.000(22) [9]n; =241
= — 0.046(11) [20] np = 2 + 1
B s 0.058(09) ~ ~ [R2Any=2+1"""" "~
— 1 E= T 0.023(40)° ~ " [9ny=2+1 "~~~ 7
§ — 0.033(17) [18] ny =2+ 1, SU(3)
E * 0.036(*5) [28] n; =2+ 1
P 0.075(73) [24]n; =2+ 1
= 0.023(22) [25] ny =2+ 1, SU(3)
£ 0.022(*57) [26] n; =241, SU(3)
3 8 0.134(63— [27]n; =2+ 1, SU(3)
—— 0.053(19) present work
A 0.043(11) lattice average (see text)

0.00 0.05 0.10

fs = ms(N[ss|N)/mn



If Dark Matter couples to the
scalar current of the nucleon (eg
via Higgs) Spin Independent cross

section ) .
2 _ |
0 X ‘f‘ f o 9 | 9
_ <N\mqq_q\N>
fq =
mn

see eg. Cheung, Hall, Pinner, Ruderman
arXiv:1211.4873

N
S 020

2. i

q=u,d,s

figure adapted from arXiv:1211.4873
thanks to J. Ruderman and collaborators
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If Dark Matter couples to the
scalar current of the nucleon (eg
via Higgs) Spin Independent cross
section

2 7
ox|ff  f=g5tg5 2 I

q=u,d,s
o <N\mq§7q\N> figure adapted from arXiv:1211.4873
fq — thanks to J. Ruderman and collaborators
TN 0.40

0.35F
see eg. Cheung, Hall, Pinner, Ruderman

arXiv:1211.4873 O30T

dramatic reduction in
uncertainty of cross section

Y.y + SU(3) [old] \

lattice average

now Ju,d gives larger .
0.2

0.4

uncertainty - but harder | | /s



Light quark mass dependence of Mg

fu,a can be determined from the pion mass dependence of
the nucleon mass

2 3779124
" ()

ms: = Bo(m, +mg) + - -

My = My + anym mi%—---

(these expressions are derived from chiral perturbation
theory, the low-energy effective field theory of QCD
whose construction is based upon the approximate
chiral symmetry of QCD)



Light quark mass dependence of Mg
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Physical point NOT included in fit



Light quark mass dependence of Mg
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YQCD Collaboration uses Overlap Valence fermions on
Domain-Wall (RBC-UKQCD) sea fermions



Light quark mass dependence of Mg
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RBC-UKQCD Collaboration uses Domain-Wall valence
and sea fermions



Light quark mass dependence of Mg
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Taking this seriously yields | am not advocating this as
o.N = 67+ 4 MeV a good model for QCD!




Conclusions

‘ Understandmg nuclear physms from the fundamental theory
of strong interactions, QCD, 1s exciting and important for
these and other reasons:

@ Quantitative connection between QCD and the rich
nuclear phenomenology

O Understanding precision low-energy nuclear physics to
constrain the SM and searches for BSM physics

@ [he growth of computing power and algorithms means that
TODAY 15 the beginning of a renaissance in nuclear physics
where these exciting things are just becoming possible!

T'hese were just a few select examples!






