

ATLAS

·····

BERKELEY LAB

X-ray irradiation update

Timon Heim, Maurice Garcia-Sciveres, Maria Mironova

Weekly student instrumentation meeting

25 January 2024

Radiation damage in transistors

- Radiation damage in transistors mainly dominated by damage in SiO₂ and at Si-SiO₂ interfaces
- Radiation damage depends on:
 - Technology (i.e. minimum possible feature size) \rightarrow 65 nm in ITkPix
 - Transistor geometry and layout \rightarrow W and L of transistor, or W/L, also referred to as transistor strength, smaller transistors suffer more
 - Exact transistor layout
- Environmental and irradiation parameters:
 - Temperature (more damage at high temperatures, maximum operational temperature in HL-LHC expected to be -10 C)
 - Supplied voltage (VDDD voltage in ITkPix chips)
 - Dose rate:
 - More damage observed at low dose rates
 - \rightarrow Scaling seems to highly depend on the transistor properties, needs to be characterized in detail for ITk

Low Dose Rate High Dose Rate

Expected doses in HL-LHC

IBL (300 fb⁻¹)

- For HL-LHC, expect maximum TID of • I Grad and 1.9 x $10^{16} n_{eq}$ /cm
- Including 1.5 safety factor
- \rightarrow Innermost ITk layers are planned to be replaced after half of ITk lifetime (2000 fb⁻¹)
- **Dose rate** expected in the innermost ITk layers: 20 krad/h

1/26/24

Irradiation procedures

- Performed several irradiation campaigns at varying dose rates for ITkPixVI and ITkPixV2
- Following common <u>configuration</u> of X-ray setups for all ITkPixVI irradiations (40 kV tube voltage, 150 μm Aluminium filter)
- Irradiation procedure:
 - Perform pre-irradiation measurements of ring oscillators
 - During irradiation, read the ring oscillator frequency (at least every 0.1 Mrad) and keep the chip busy by running digital scans
 - Keep the chip cold (-10 ± 1 C) → Corresponds to maximum expected operating temperature of chip of -7.5 C (Details)
 - Monitor the VDDD voltage and temperature
- Additionally, perform long-term low dose rate irradiation of RD53A chip, using Kr-85 source (at the expected HL-LHC dose rate of 20 krad/h) → (SLow Irradiation of Phase-2 PixEl Readout)

Maria Mironova

Ring oscillators in ITkPixVI

- ITkPixVI/2 chip includes ring oscillator for radiation testing (located at chip bottom)
- 42 ring oscillators made with different logic cells and different transistor sizes (strength 0, 1 and 4)
- \rightarrow ITkPixVI actual digital logic does not use strength 0 gates anymore
- Bank A has exactly the same ring oscillators as RD53A
- Bank B includes 34 additional ring oscillators
- Each oscillator drives a 12-bit counter, enabled for a given period of time
- \rightarrow Calculate frequency f or delay T_D=I/(N f)
- Delay before irradiation of order 0.1 ns
- During irradiation the gate delay increases
- → Too large (>200%) delay will cause digital logic to fail

Group	Турез	#
A/B	CLK, Inv, NAND, NOR	3 x 8
B FF	Various flip-flop gates	6
B LVT	LVT inverter & 4-input NAND	4
ВСАРА	Injection-capacitor loaded 4-input NAND	8

Ring oscillator vs VDDD

- Before irradiation, characterise ring oscillator frequency as a function of VDDD
- → See the expected linear behaviour with VDDD, and can use the slopes to correct ring oscillator frequencies to account for drifts in VDDD with irradiation
- Repeat the curves after irradiation, as the slopes change with irradiation and interpolate between the two points for the correction

Maria Mironova

LBL X-ray setup

- Many X-ray irradiations performed to characterise radiation tolerance for ITkPixVI
- Need to repeat measurements for ITkPixV2 and continue characterisation of the different chip features
- Ran one X-ray irradiation in Oxford last year (at 5 Mrad/h), see this update
- Also set up X-ray irradiation at LBL \rightarrow dose rate of 0.5 Mrad/h and non-uniform beamspot
- Irradiation focused on **end of chip** (i.e. chip voltages and ring oscillators)
- Monitor everything available via the VMUX, and measure ring oscillators

Environmental monitoring

- Irradiation ran from September until the Christmas break
- Set up Grafana to monitor irradiation status
- Generally irradiation ran smoothly
 - Had to power down X-ray machine once due to power outage
 - \rightarrow Left the chip warm and unpowered
 - Irradiation script crashed a few times
 - → Need to make more reliable and set up alerting for next time
- Reached total dose of 1.2 Grad

Ring oscillators

- Ring oscillator frequency with irradiation
- Corrected for drift of VDDD with irradiation
- Stopped irradiation at ~100 Mrad due to power outage

 \rightarrow Can see some annealing happened but with when restarting irradiation frequency continues with the same trend

1/26/24

Ring oscillators

- Can also compute gate delay increase with irradiation (requirement < 200%)
- Steady increase, start to see some non-linearity for the strength 0 gates
- Note: Strength 0 gates not used in digital logic of the chip
- Can compare to irradiations in Oxford at 5 Mrad/h → clearly larger gate delay increase in this irradiation at 0.5 Mrad/h

Low dose rate effects

- Well-known dose rate dependence of radiation damage in 65 nm transistors
- Have been collecting data over the past few years using ITkPixVI → Observe a factor ~2 more damage at the HL-LHC expected dose rates (20 krad/h)
- ITkPixV2 data matches well with existing results

Chip currents

- Main focus of irradiation were chip voltages and currents
- Chip powered in LDO mode \rightarrow constant input voltage
- Main chip reference current (Iref) drifts with irradiation \rightarrow expected and consistent with ITkPixV1 results
- Analog currents seems to increase significantly with irradiation
- → surprising, could be non-uniform irradiation, but if real need to think about implications for ASIC powering envelope

Main chip reference current (Iref)_

Power supply voltage

Power supply currents

Voltages

VrefA/D

- Input voltage measured on the chip decreases slightly during irradiation
- Vref and VDD increase with irradiation (as they derive from Iref)
- VDDA increases more than VDDD
- → surprising, as a fix to metallisation layers was included in ITkPixV2 to make drift more uniform
- \rightarrow Increase was also more similar ITkPixV2 irradiation in Oxford
- \rightarrow Non-uniform irradiation or dose rate effect?

More voltages...

VCAL_DAC

VDDA capmeasure

VCAL_MED

Analog ground

Vref_Core

Even more voltages...

DIFF FEVTHI Main

Dose [Mrad]

Radiation sensors

Radsens Analog SLDO

Iref

CDRVCO main bias 1050 -1000 -950 -0 200 400 600 800 1000 1200

CDRVCO buffer

CDR CP current

CDR FD current

CML driver tap 2 bias

CML driver tap I bias

CML driver tap main bias

1/26/24

400

600

Dose [Mrad]

Preamp Main

PreComp

Vth2

Vth1 main

1/26/24

Capmeasure circuit

200

0

600

Dose [Mrad]

600

Dose [Mrad]

400

400

800

800

1000

1000

1200

1200

Preamp right

Preamp top left

Preamp Top

Preamp top right

1/26/24

Maria Mironova

200

Preamp Left

225

220

Current [uA] 250 250

720

0

Vth1 Left

0

IDiffPreampLeft

200

IDiffVth1Left

Analog input current

Digital input current

Analog shunt current

Digital shunt current

Conclusions

- Mostly done with analysing data from LBL X-ray irradiation and data looks mostly as expected
- Large increase in analog current is surprising
- \rightarrow Plan to do follow-up irradiation with chip in SLDO mode
- Also ramping up efforts on SLIPPER V2

ITkPixVI

Table 6.5: Increase of the currents and voltages of the ITkPixV1 chip after irradiation to 1 Grad with X-rays at a dose rate of 4 Mrad/h.

Voltage/Current	Increase			
Currents				
Main reference current Iref	+4%			
Analogue input current I_in analog	+14 %			
Digital input current I_in digital	+9%			
Analogue shunt current I_shunt analog	+5%			
Digital shunt current I_shunt digital	+5%			
Voltages				
Analogue input voltage VinA	+3%			
Digital input voltage VinD	+3%			
Analogue reference voltage VrefA	+ 12 %			
Digital reference voltage VrefD	+8%			
Analogue LDO output voltage VDDA	+14 %			
Digital LDO output voltage VDDD	+9%			
ADC reference voltage VrefADC	+8%			
SLDO offset voltage V_offset	+1%			

Transistors

- MOSFET transistors are the building of current (pixel detector) electronics
- Working principle:
- I. Voltage is applied to gate to induce a channel of free charge carriers below the Si-SiO₂ surface
- 2. Voltage applied between source and drain allow charge carriers to move \rightarrow current

Maria Mironova

Transistors part II

• Important characteristics of transistors include:

- Transistor leakage current $(I_{leak}) \rightarrow$ current when no voltage V_{GS} is applied
- Threshold voltage $(V_{th}) \rightarrow$ voltage at which the transistor turns on
- Various logic gates can be constructed from combinations of PMOS and NMOS gates
- E.g. Inverter gate \rightarrow if you input 0, you get 1 and vice versa

Transistor turn-on curve

CMOS Inverter

Damage to SiO₂

- In readout electronics, the damage to the SiO₂ and at the Si-SiO₂ interface are more important
- Mainly caused by ionization creating charged defect state in the oxide or at the interface → high electric fields exist in oxides, which separate the charge carriers

Two different effects to consider:

- Oxide charges (SiO₂) → defects in SiO₂ are always donor-like (positive), occurs relatively quickly
- Interface states (Si-SiO₂ surface)
 - \rightarrow Impurity hydrogen ions released from lattice
 - \rightarrow Give rise to new interface states which serve as traps
 - \rightarrow Slower process due to lower mobility of hydrogen ions
 - ightarrow Can be both acceptor and donor like, depending on material
 - → Interface traps are **negatively charged in NMOS** (under positive bias) and **positively charged in PMOS** (under negative bias)

	NMOS	PMOS	
Oxide charges	+	+	
Interface traps	-	+	

Transistors

Edge effects - NMOS

- Depending on transistor type, TID damage effects can look different
- Consider effects of radiation damage in STI
- In NMOS transistors:
- I. Fast build-up of positive oxide charges
 - → opens up another channel through which electrons can flow between source and drain
 - \rightarrow Leakage current increases
 - \rightarrow Threshold voltage decreases
- 2. Slower build-up of negative interface charges
 - → Counteracts the effect of positive oxide charges
 - ightarrow Leakage current decreases
 - \rightarrow Threshold voltage increases

Edge effects - PMOS

- In PMOS transistors:
- I. Fast build-up of positive oxide charges
 - → Holes in the conduction channel, so no additional channel opens up
 - \rightarrow Leakage current does not increase
 - \rightarrow Threshold voltage decreases
- 2. Slower build-up of positive interface charges
 - \rightarrow Same effect as oxide charges
 - \rightarrow Threshold voltage increases further
- → Mechanism known as Radiation Induced Narrow Channel Effect (RINCE)

1/26/24