Quad Hybrid QC Process

Marija Marjanović

ITk Quad Pixel Hybrids

- Common design for all layers
 - Slight difference in size for L1 hybrids
- Different SMD components loaded depending on the layer
 - SLDO parameters
 - L1
 - L2-L4
- Bare flex production
 - NCAB (L1: 350 ; OS: 840)
 - Tecnomec (OS: 840)
 - Yamashita (Japan in-kind contribution)
- Population order from CERN
 - Vendor 1 L1 + 50% OS Order out 17/10 Start assembly ~February 2024
 - Vendor 2 50% OS Order out 11/10

Acceptance tests

- Accept /Reject the batch on acceptance criteria set in the price inquiry document and the technical notes
 - Visual Inspection
 - Metrology X-Y measurement
 - Dowel Hole check
 - Layer thickness
 - Via resistance
- Design Check
- Over/under etching of Cu
- Signal Transmission
- Wirebonding test
- Any other fabrication variation compared to the design

Hybrid QC and QA measurements

- Quality Assurance (QA) tests performed to qualify the design
- Quality Control (QC) tests ensure design specifications are fulfilled
 - Catch unacceptable defects as really as possible
- Both QC and QA tests are stored in production database (PDB)
 - Complete traceability of the hybrids

Hybrid QC Production and QC Testing Flow

- Reception
- Population
- Tab cutting
- QA pre-thermal cycle / thermal shock
- QA post-thermal cycle / thermal shock
- QC
- QA post radiation cycle
- PCB ready for module
- PCB Reception at module site

Bare hybrid reception stage summary

QC Reception tests of bare board	Frequency	Measurements
Report for Bare flex PCB	Per batch	Industry report Ionic contamination check
Bare board visual inspection	10% of a batch	Optical high-resolution Image Visual Inspection results
Metrology	5% of a batch	Flex body dimensions (X, Y) Diameter of dowel hole A and width of slot-B Output from Jig testing(pass/fail)
Dowel hole tolerance check	All	Pass/fail
Layer thickness measurement	25% of a batch	individual layer thickness measurements of the flex PCB stack-up
Via resistance test	QA - ~5flexes	Resistance

Visual Inspection

- Performed on 10% of bare hybrids
 - Back and front side
- Separated in several categories (each one assessed separately 1 - 3)
 - Wirebond pad contamination
 - Particulate contamination
 - Watermarks
 - Scratches
 - Soldermark irregularity/cracks
- Overall grading 1 (perfect) 5 (unusable)

Metrology

- Board dimensions
 - X and Y dimensions
- Average thickness of all FE chip pick-up areas
- Std deviation of thickness of all FE chip pick-up area
- Dowel hole/slot dimensions
 - Diameter of dowel hole (top left of the flex)
 - Diameter 3mm -0/+100 um
 - Width of dowel slot (bottom right of the flex)
- Performed on 5% of batch

Layer thickness measurement

- Performed on 25% of flexes (one per panel)
- Specification
 - Cu thickness of top layer 23-27 um
 - Cu thickness of inner layer 10-12 um
 - Cu thickness of bottom layer 23- 27 um
 - Dielectric thickness 5um (as per IPC)
 - Coverlay with Adhesive thickness
 - Overall thickness 250um +/-20 %

#1	e		
# 2	<		-
# 3			
#4			
#5			
#6	d	6	
# 7			
# 8	me		10
# 9		5	
W 10			242 0
# 11	-0	-	
# 12		2	100 - 100 000 ¹

epec build to print electronics	Material Stack Up: Flex						
	Part Number: RD53B ITHPixV1 Quad Hybrid REV 3.1						
Updated to 25 um by EPEC Flex Thickness: 28	LPI Soldermask (Flexible) Base Copper Polyimide (Adhesiveless) Adhesive Copper Polyimide (Adhesiveless) Polyimide (Adhesiveless) Base Copper Polyimide (Adhesiveless) Base Copper Polyimide (Adhesiveless) Base Copper Coverlay Adhesive Coverlay Im Spec: 200 um +/- 50 um						

Cu thickness Measurements	
Structure on the frame	Description
	1 L+TCu+TSM
	2 L+TCu+ENIG
	3 L+MCu
	4 L+BCu+ENIG
	5 L+TCu+BCu+ENIG(2)
	6 L+MCu+BCu+ENIG
	7 L+TCu+ENIG+MCu
	8 L+TCu+Mcu+Bcu+ENIG(2)
	9 L+TCu+TSM+MCu+BCu+BCL
	10 L+TCu+ENIG+MCu+BCu+BCL
	11 L+TCu+ENIG+MCu+BCu+ENIG
	12 Laminate(L)

Population stage summary

QC Population	Frequency	Measurements
Report for population	Per batch	Industry report
Populated board visual inspection	10% of a batch	Optical high-resolution Image Visual Inspection results

Visual Inspection

- Performed on 10% of populated hybrids
 - Only front side
- Separated in several categories (each one assessed separately 1 - 3)
 - Wirebond pad contamination
 - Particulate contamination
 - Watermarks
 - Scratches
 - Soldermark irregularity/cracks
 - HV LV connector assembly
 - Data connector assembly
 - Solder spills
 - Component misalignment
 - Shorts/close proximity of components due to misalignment
- Overall grading 1 (perfect) 5 (unusable)

Metrology

- HV capacitor thickness
- Thickness including the black body of power connector (excluding pins)
- Dowel hole/slot dimensions
 - Diameter of dowel hole (top left of the flex)
 - Diameter 3mm -0/+100 um
 - Width of dowel slot (bottom right of the flex)
- Performed on 5% of batch

Cutting stage summary

QC Cutting	Frequency	Measurements
Tab cutting	All	Pass/fail

Hybrid QC Production and QC Testing Flow

- Reception
- Population
 - Visual Inspection
 - Component Position Check
- Tab cutting
 - Quick tab cutting inspection

QC stage summary

QC stage	Frequency	Measurements
LV and HV test	All	LV and HV electrical tests including NTC measurement
Dowel hole tolerance check	All	Pass/fail

LV – HV test

- LV test
 - GND drop, Vin drop → effective resistance
 - NTC value
- HV test
 - Leakage current
- Temperature, humidity

DANGER	
HIGH VOLTAGE 30	
Pico Pico	

Flex Serial number	VIN+	<u>XIN</u> -	Vin Drop (V)	GND+	GND-	GND Drop (V)	Capacitor leakage test (mV)	NTC reading (V)	Resistance Vin(Ohms)	Resistance GND(Ohms)	Total Resistance(m Ohms)	Capacitor Egivalent leakage current(nA)	NTC Value(Kohms)	Temperature	Humidity
20 11 00 00 2 1 1 0241															
20-0-PG-PO-2-1-1-0241	1.301	0.769	0.532	2.233	2.004	0.229	60	1.612	0.01064	0.00458	15.22	6	6.328	23	5
20-U-PG-PQ-2-1-1-0243	1.328	0.77	0.558	2.234	1.995	0.239	52	1.62	0.01116	0.00478	15.94	5.2	6.296	23	5
20-U-PG-PQ-2-1-1-0335	1.485	0.767	0.718	2.241	1.828	0.413	21	1.842	0.01436	0.00826	22.62	2.1	5.537	23	5
20-U-PG-PQ-2-1-1-0557	1.525	0.766	0.759	2.234	1.988	0.246	52	1.669	0.01518	0.00492	20.1	5.2	6.111	23	5
20-U-PG-PQ-2-1-1-0559	1.264	0.769	0.495	2.231	2.052	0.179	42	1.47	0.0099	0.00358	13.48	4.2	6.939	23	5
20-U-PG-PQ-2-1-1-0560	2.114	0.753	1.361	2.244	1.75	0.494	67	1.989	0.02722	0.00988	37.1	6.7	5.128	23	5

LV– HV test

Slide borrowed from Koji

QA pre-thermal cycle / thermal shock stage summary

QA pre-thermal tests	Frequency	Measurements
Metrology		Flex body dimensions (X, Y) Diameter of dowel hole A and width of slot-B Output from Jig testing(pass/fail)
SLDO and precision resistor measurement		Resistor values and tolerance
NTC Verification		NTC value and parameters
Signal transmission test		S-parameter and Impedance values and plots
Via resistance test		Resistance
Wirebond pull test		Strength and failure

QA testing

- SLDO and precision resistors
 - 5-10 flexes per batch
 - When a new reel of resistors has been loaded (information from population vendor)

• NTC verification

- 5-10 flexes per batch
- When a new reel of resistors has been loaded (information from population vendor)
- +40 C, 0 C, -40 C in the environmental chamber \rightarrow with the soak time of 1h at each step

Signal transmission

- Signal transmission test measures the S-parameters to understand the losses and to ensure these meet the specifications
- This test verifies that the correct stack-up and dielectric is used in the construction of the fl to ensure that the impedance is within specifications
- Specifications
 - Differential impedance of the transmission lines $100 \Omega \pm 10\%$
 - Attenuation of the signal, measured at 0.64 GHz, <2 dB
 - Signal transmission on the module PCB and via the connector must have a crosstalk attenuation of > $30~\rm dB$
- Procedure:
 - Measure the S-parameters for the uplink/downlink for data/cmd respectively
 - Derive the impedance from the S-parameters measurement using the pseudo-TDR measurement feature in the test system of the network analyser
 - S21 and S22 recorded at 640MHz
 - Also done on the test coupon for a differential pair structure

Via chain resistance testing

- Via resistance measurements ensure that the flex substrate is not being damaged by thermal cycling
- Measurements to be repeated before and after thermal cycling (and thermal shock as a destructive test)
 - Pre-post difference in resistance of < 4 Ohms
- Check if thermal cycling causes any delamination of the flex, and therefore damaging the vias, altering their resistance
- Flexes are thermally cycled in an environmental chamber from -45°C to +60°C
- 5-10 flexes per batch and on test coupons

QA tests –Wirebond pull test

- Check if the surface finishing is suitable for a high-quality and reliable wirebond
- Wirebonds are tested pre and post thermal cycles
- Thermal chamber from -45°C to +60°C for 1(and 100) cycle
- 5-10 flexes per batch

QA post-thermal cycle / thermal shock stage summary

QA pre-thermal tests	Frequency	Measurements
NTC Verification		NTC value and parameters
Via resistance test		Resistance
Wirebond pull test		Strength and failure

QA post-radiation cycle stage summary

	Frequency	Measurements
Signal transmission test		S-parameter and Impedance values and plots
Via resistance test		Resistance

Hybrid QC Production and QC Testing Flow

- Reception
- Population
- Tab cutting
- QA pre-thermal cycle / thermal shock
- QA post-thermal cycle / thermal shock

• QC

- QA post radiation cycle
- PCB Reception at module site
 - Visual inspection
 - Mass
 - Metrology

Hybrid QC Production and QC Testing Flow

- Reception
- Population
- Tab cutting
- QA pre-thermal cycle / thermal shock
- QA post-thermal cycle / thermal shock
- QC
- QA post radiation cycle
- PCB Reception at module site
- Data uploaded to production DB at each stage

Hybrid QC/QA data management

 Hybrid component type created in the PDB as well as the production stages and associated tests

Type List 🕜			
Actions			
Name	Code	Subproject	SN
Triplet L0 Stave PCB	TRIPLET_L0_STAVE_PCB	Inner pixels	PT
Triplet L0 R0 PCB	TRIPLET_L0_R0_PCB	Inner pixels	P0
Triplet L0 R0.5 PCB	TRIPLET_L0_R0.5_PCB	Inner pixels	P5
Quad PCB	QUAD_PCB	Pixel general	PQ

Stage List 🕢				
Actions				Add
Name	Code	Туре		
Reception	PCB_RECEPTION	INITIAL	Tests 6	:
Population	PCB_POPULATION		Tests 2	:
Cutting	PCB_CUTTING		Tests 1	:
QA pre-thermal cycle / thermal shock	QA_PRE_THERMAL_CYCLE	ALTERNATIVE	Tests 7	:
QA post-thermal cycle / thermal shock	QA_POST_THERMAL_CYCLE	ALTERNATIVE	Tests 3	:
QC	PCB_QC		Tests 2	:
QA post radiation cycle	QA_POST_RADIATION_CYCLE	ALTERNATIVE	Tests 2	:
Test failed, needs investigation	UNHAPPY	ALTERNATIVE	Tests	:
PCB ready for module	PCB_READY_FOR_MODULE		Tests	:
PCB Reception at module site	PCB_RECEPTION_MODULE_SITE		Tests 3	:

Flex QC data management

- Non-electrical GUI + localDB
- → upload to production DB

20UPGPQ2110243

Module PCB - Quad PCB

Basic Info 😮	
ATLAS Serial Number	20UPGPQ2110243
Alternative Identifier	No alternative identifier
Component Type	Module PCB PCB
Туре	Quau PCB
Current Stage	POPULATION
Current Location	1 University of Oklahoma OKLAHOMA
Shipment Destination	No current shipment destination
Home Institute	1 University of Edinburgh EDI

Received to p | Modules | PCBs | Bare Modules | Sensors | QC Tests | YARR Scans

Top Page > Component List > 20UPGPQ1101197

20U PG PQ 11 01197

Quad-PCB/Prototype/EPEC-100um

ITkPD Component Page

Component Information

No match.

Item	Value
Serial Number	20UPGPQ1101197
Production DB Component ID	0551a0e5c93529ea88a7c52865cb3eca
LocalDB Component ID	63e1800cb5aac100367799a5
Component Type	module_pcb
Super-Component	20UPGR92101197

Back up

LV – HV test

+0.8V

+0.7V

GND

Hybrid QC/QA data management

- PCB design version
- PCB manufacturer technology
- PCB manufacturer
- SMD population vendor

Hybrid QC/QA data management

PCBs are tracked as batches

- Batch for each set of bare PCBs received from the manufacturer •
- Batch for each set of bare PCBs received from the population vendor • Bare PCB batch properties:
- PCB design stack-up total thickness
- PCB manufacturer batch number •
- Date panel manufactured PCB Manufacturer •
- PCB Manufacturer Ionic contamination result
- Number of panels with all good flexes
- Number of panels with one cross out
- Number of panels with more than one cross-out •

Populated PCB batch properties:

- SMD population batch number
- Date SMD loaded
- SMD NTC manufacturer part number
- SMD NTC nominal value
- SMD NTC tolerance
- HV capacitor nominal value
- HV capacitor rating
- HV resistor nominal value
- HV resistor tolerance
- SLDO resistor nominal value (analogue)
- SLDO resistor tolerance (analogue)
- SLDO resistor nominal value (digital)
- SLDO resistor tolerance (digital)
- PCB Manufacturer SMD population vendor
- SMD Population Ionic Contamination result

- Procedure documents and requirements table are prepared by the SQ team
- Complete draft upload to EDMS
- Circulation for comment for 1 week
 - Comments addressed
- Released for SQ
 - Following feedback from the first few groups, make any changes to the documents
- Circulation for comment on EDMS
 - Comments addressed
- EDMS approval

Lab infrastructure - cleanroom

- Particle concentration compatible with class 9 ISO 14644-1
- Particle count in the cleanroom should be regularly monitored, and a system should be in place to alert operators if the count has gone out
 of specification
- Cleanroom operators wear the following lab garments: ISO9 compatible Lab coat, hairnet, shoes/shoe covers, cleanroom gloves and face mask
- Dew point has to be below the module temperature when it is being handled
- Temperature and humidity of the testing site cleanroom should be monitored to alert operators if the conditions have gone out of specification

Lab infrastructure – storage area

- Temperature 18C to 24C and RH 0 to 30% and ESD protection
 - · Model of cabinets and how low humidity is achieved
- Notification system for out-of-spec temperature and RH that is able to report
- Storage space is sufficient for at least 4 weeks of planned production rate

Lab infrastructure - shipping

- Shipping containers will have to maintain module cleanliness, ESD protection (refer to IEC 61340-5-1 and IEC 61340-5-2) as well as reduce and measure mechanical shock
 - Use Pelicase or equivalent for external case. Place PCB in a sealed ESD bag. List indicators and sensors planned to be used for shipments
- Shipping is performed in the database

• Database interaction

Site Qualification Process for Flex QC

- 3.1 Visual inspection of bare flexes
- 3.2 Layer thickness measurement
- 3.3 Metrology
- 3.4 Visual inspection of populated flexes
- 3.5 LV/HV test
- Report the findings on 5 flexes

Site Qualification Process for Flex QA

- 4.1 Signal transmission test on flex
- 4.2 Thermal cycling
- 4.3 Thermal shock
- 4.4 Extensive QA HV test (pre- and post-thermal cycling)
 - HV test upto 1100V
 - HV soak test to identify defects due to prolonged HV to the circuit

4.5 QA tests - Measuring SMD components values, Via resistance, delamination, insulation resistance

4.6 QA peel test

- Measure the peel strength of the Cu to the laminate (Done by the vendor)
- 4.7 Wirebond pull test (pre- and post- thermal cycling)

4.8 HV capacitor QA test

 Performed on a HV capacitor coupon with multiple HV capacitors to ensure the correct capacitors are loaded and also check that the capacitors work as per the rating on the datasheet

Additional tests on the test coupon

- Peel test
 - Requested as a part of the PCB fabrication so will not be done as a part of flex QC
- Delamination test
 - Measure capacitance between copper planes before and after thermal cycling (and thermal shock)
 - Ensures copper planes don't deform as a consequence of thermal cycling process
- Insulation Resistance test
 - Apply HV between one pair of conductor tracks (traces) and measure the resulting leakage current to ensure the insulation resistance is sufficiently high (example around or above 100 GOhms)

Additional tests on the test coupon

- Repeat the LV-HV test for the extender period (soak test)
- Repeat the test by running the test for 8 hrs
- Repeat the test by running overnight

HV capacitor QA test

Test to ensure that the correct capacitor is loaded on the flex PCBs

This PCB should be populated in the same run as the flex PCBs

- The HV capacitor PCB has 50 capacitors connected between HV and GND
- Apply HV (650Vx1.5 = -975V) for 20 mins and record the observation

Module specification document

- The HV filter surface mount capacitor will be either a "High Reliability Capacitor" having met the MIL-PRF-49467 specification rated to the maximum operational sensor bias or a standard component rated to twice the maximum operational sensor bias
- The HV capacitor chosen will be sample tested with each lot qualified by testing 5% or 200 units (whichever is the lesser number) with no failures
- Test conditions are 100°C with a test voltage applied for 1 hour with a measured leakage current < 10 nA on all tested parts

