
Jet Substructure Experiment Overview: 
New Ideas and Measurements 

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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2              Disclaimer

This talk is not meant to be comprehensive.  I will give 
a few examples and comments to spark discussion.

!

I will use representative examples, but will make 
no attempt at providing a balance across 
experiments from the LHC and beyond.

While I am a member of ATLAS (and H1), this 
talk is not on behalf of my collaborators.
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Figure 6. Left: Distributions of signal and background events without selection. Right: Back-
ground distributions at 50% signal e�ciency (true positive rate) for di↵erent classifiers. The un-
constrained classifier sculpts a peak at the W -boson mass, while other classifiers do not.

Figure 7. Decorrelation versus background-rejection power showing that MoDe[0] performs sim-
ilarly to existing state-of-the-art decorrelation methods.

3.2.3 Beyond Decorrelation

Moving beyond decorrelation the 1/JSD metric is no longer relevant. Figure 6 shows that

neither MoDe[1] nor MoDe[2] sculpts a peaking structure in the background, but their

1/JSD values are small since neither seeks to decorrelate from the mass. Therefore, we

replace the 1/JSD metric with the signal bias induced by the classifier selection, which

is what actually matters when searching for resonant new physics. Specifically, we use

the signal estimators obtained by fitting the selected background-only samples to a simple

polynomial function as proxies for the signal biases. These are divided by their uncertainties

such that values of roughly unity are consistent with no bias, while values significantly larger

– 13 –
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What is jet substructure good for?

A probe of fundamental 
and emergent properties of 

the strong force

1. Fundamental parameters of the SM

2. BSM searches using small deviations from SM

3. Quantum properties of inherently exciting emergent pheno

4. Develop / tune Parton Shower Monte Carlo (to aid other 

searches / measurements)
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This makes observables on softdropped 
jets amenable to precision calculations 

for the ~first time at a pp collider.  

This is particularly important because JSS observables 
are dominated by resummation and not fixed-order! 

Grooming makes pp jets “look like” e+e- jets.
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12Precision jet substructure with grooming

Particular grooming algorithms (soft 
drop / modified mass drop) have 
desirable properties to make the 
above statement quantitative.

A. Larkoski, S. Marzani, G. Soyez, J. Thaler, JHEP 1405 (2014) 146

https://arxiv.org/find/hep-ph/1/au:+Larkoski_A/0/1/0/all/0/1
https://arxiv.org/find/hep-ph/1/au:+Marzani_S/0/1/0/all/0/1
https://arxiv.org/find/hep-ph/1/au:+Soyez_G/0/1/0/all/0/1
https://arxiv.org/find/hep-ph/1/au:+Thaler_J/0/1/0/all/0/1
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Figure 12: Comparison between soft-drop groomed e(2)
2

distributions with zcut = 0.1 and

� = 0 (top) and � = 1 (bottom) for matched and normalized NNLL, parton-level, and hadron-

level Monte Carlo. All curves integrate to the same value over the range e(2)
2

2 [0.001, 0.1].

The uncertainty band for soft drop with � = 1 at NNLL includes the variation of the two-loop

non-cusp anomalous dimension.

Fig. 12 also illustrates that soft drop grooming eliminates sensitivity to both hadroniza-

tion and underlying event until deep in the infrared. The parton-level and hadron-level dis-

tributions for each Monte Carlo agree almost perfectly until below about e(2)
2

. 10�3. That

hadronization e↵ects are small is expected from our e+e� analysis, but this also demonstrates

that underlying event e↵ects are negligible. A similar observation was made in Ref. [8], though

at a much higher jet pT (pT > 3 TeV). As in e+e� collisions, we expect that the hadronization

e↵ects that are observed in the Monte Carlo can be explained by a shape function, though

we leave this to future work.
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https://arxiv.org/find/hep-ph/1/au:+Frye_C/0/1/0/all/0/1
https://arxiv.org/find/hep-ph/1/au:+Larkoski_A/0/1/0/all/0/1
https://arxiv.org/find/hep-ph/1/au:+Schwartz_M/0/1/0/all/0/1
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sensitive to pileup; for example, the jet mass scales as O(A2) [94] for the jet catchment area A [95]
(whereas the jet pT scales linearly with A). The jet-area subtraction that works well for pT has been
extended to event shapes [96], but must be re-calibrated per observable. Constituent-based pileup sub-
traction schemes [97, 98, 99, 100, 101] show great promise and are actively being studied and adapted
to the actual experimental settings [102, 103, 104, 105, 106]. Even without constituent-based subtrac-
tion techniques, though, there is a large reduction in pileup sensitivity to jet substructure from groom-
ing [102, 107, 106, 3]. Grooming systematically removes soft and wide-angle radiation, which is exactly
the profile characteristic of pileup. Even with extreme levels of pileup (up to 300 collisions), grooming
can preserve the distribution of the jet mass distribution [108].

Despite the power of grooming for pileup suppression, there is still a residual degradation of reso-
lution with increased levels of pileup which makes precision jet substructure measurements challenging
at high instantaneous luminosity. Track-based observables are robust to pileup because their vertex of
origin can be well-distinguished from pileup vertices. Precision track-based substructure observables
have been calculated [109, 110, 111, 112], but typically require universal NP input. It may be interesting
to do a track- and jet-substructure-based extraction of ↵s, but this is left as a possibility for future work.

1.4 Observable Sensitivity to ↵s

In this subsection, we study the sensitivity of the groomed jet mass to variations in the value of ↵s. We
begin with a discussion based on the analytic formulae at LL accuracy. We then perform a PS study,
highlighting the interplay between the sensitivity of different parts of the distribution to variations in the
value of ↵s and NP effects. Finally, we discuss the issue of Casimir scaling and the related issue of using
normalized versus unnormalized distributions.

1.41 Analytic Understanding

To get an understanding of the sensitivity of the groomed mass distribution both to the value of ↵s as
well as to the quark and gluon composition, it is enlightening to study the LL distribution. Here, for
simplicity, we consider only the leading logs in the observable, in the resummation region; complete
expressions can be found in Refs. [52, 55, 54, 53]. For � = 0, the LL result at fixed coupling for the
cumulative distribution in the resummation region takes the schematic form

⌃(e(2)
2 ) = exp


�

↵sCi

⇡
[log(zcut) � Bi] log(e(2)

2 )

�
, (9)

where Bi = �3/4 for quarks and Bg = �
11
12 +

nf

6CA
for gluons (nf is the number of active quark flavors).

This highlights that for � = 0, the groomed jet mass is a single-logarithmic observable, contrasting with
the standard double-logarithmic behavior of plain jet mass. Differentiating the cumulative distribution,
we obtain the spectrum

e
(2)
2

�

d�

de
(2)
2

= �
↵sCi

⇡
[log(zcut) � Bi] exp


�

↵sCi

⇡
[log(zcut) � Bi] log(e(2)

2 )

�
. (10)

Here, we immediately see several interesting consequences. In the resummation region, the slope of
the distribution when plotted against log e

(2)
2 is set by the product ↵sCi, where Ci is the Casimir factor,

namely CF = 4/3 for quarks and CA = 3 for gluons. We therefore see that the groomed mass is indeed
sensitive to the value of ↵s. Due to the larger color charge of gluons, we expect that samples of pure
gluon jets would have a significantly higher sensitivity to the value of ↵s; this expectation will be born
out in our PS studies below. Because ↵s is always multiplied by a color factor, though, knowing the
precise quark/gluon composition of a sample is essential, as discussed in Sec. 1.43. In practice, the PS
studies and the analytic studies that follow (see Sec. 1.5) include higher-order effects, such as subleading
terms in the splitting functions, that violate Casimir scaling.
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Figure 12: Comparison between soft-drop groomed e(2)
2

distributions with zcut = 0.1 and

� = 0 (top) and � = 1 (bottom) for matched and normalized NNLL, parton-level, and hadron-

level Monte Carlo. All curves integrate to the same value over the range e(2)
2

2 [0.001, 0.1].

The uncertainty band for soft drop with � = 1 at NNLL includes the variation of the two-loop

non-cusp anomalous dimension.

Fig. 12 also illustrates that soft drop grooming eliminates sensitivity to both hadroniza-

tion and underlying event until deep in the infrared. The parton-level and hadron-level dis-

tributions for each Monte Carlo agree almost perfectly until below about e(2)
2

. 10�3. That

hadronization e↵ects are small is expected from our e+e� analysis, but this also demonstrates

that underlying event e↵ects are negligible. A similar observation was made in Ref. [8], though

at a much higher jet pT (pT > 3 TeV). As in e+e� collisions, we expect that the hadronization

e↵ects that are observed in the Monte Carlo can be explained by a shape function, though

we leave this to future work.
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sensitive to pileup; for example, the jet mass scales as O(A2) [94] for the jet catchment area A [95]
(whereas the jet pT scales linearly with A). The jet-area subtraction that works well for pT has been
extended to event shapes [96], but must be re-calibrated per observable. Constituent-based pileup sub-
traction schemes [97, 98, 99, 100, 101] show great promise and are actively being studied and adapted
to the actual experimental settings [102, 103, 104, 105, 106]. Even without constituent-based subtrac-
tion techniques, though, there is a large reduction in pileup sensitivity to jet substructure from groom-
ing [102, 107, 106, 3]. Grooming systematically removes soft and wide-angle radiation, which is exactly
the profile characteristic of pileup. Even with extreme levels of pileup (up to 300 collisions), grooming
can preserve the distribution of the jet mass distribution [108].

Despite the power of grooming for pileup suppression, there is still a residual degradation of reso-
lution with increased levels of pileup which makes precision jet substructure measurements challenging
at high instantaneous luminosity. Track-based observables are robust to pileup because their vertex of
origin can be well-distinguished from pileup vertices. Precision track-based substructure observables
have been calculated [109, 110, 111, 112], but typically require universal NP input. It may be interesting
to do a track- and jet-substructure-based extraction of ↵s, but this is left as a possibility for future work.

1.4 Observable Sensitivity to ↵s

In this subsection, we study the sensitivity of the groomed jet mass to variations in the value of ↵s. We
begin with a discussion based on the analytic formulae at LL accuracy. We then perform a PS study,
highlighting the interplay between the sensitivity of different parts of the distribution to variations in the
value of ↵s and NP effects. Finally, we discuss the issue of Casimir scaling and the related issue of using
normalized versus unnormalized distributions.

1.41 Analytic Understanding

To get an understanding of the sensitivity of the groomed mass distribution both to the value of ↵s as
well as to the quark and gluon composition, it is enlightening to study the LL distribution. Here, for
simplicity, we consider only the leading logs in the observable, in the resummation region; complete
expressions can be found in Refs. [52, 55, 54, 53]. For � = 0, the LL result at fixed coupling for the
cumulative distribution in the resummation region takes the schematic form

⌃(e(2)
2 ) = exp


�

↵sCi

⇡
[log(zcut) � Bi] log(e(2)

2 )

�
, (9)

where Bi = �3/4 for quarks and Bg = �
11
12 +

nf

6CA
for gluons (nf is the number of active quark flavors).

This highlights that for � = 0, the groomed jet mass is a single-logarithmic observable, contrasting with
the standard double-logarithmic behavior of plain jet mass. Differentiating the cumulative distribution,
we obtain the spectrum

e
(2)
2

�

d�

de
(2)
2

= �
↵sCi

⇡
[log(zcut) � Bi] exp


�

↵sCi

⇡
[log(zcut) � Bi] log(e(2)

2 )

�
. (10)

Here, we immediately see several interesting consequences. In the resummation region, the slope of
the distribution when plotted against log e

(2)
2 is set by the product ↵sCi, where Ci is the Casimir factor,

namely CF = 4/3 for quarks and CA = 3 for gluons. We therefore see that the groomed mass is indeed
sensitive to the value of ↵s. Due to the larger color charge of gluons, we expect that samples of pure
gluon jets would have a significantly higher sensitivity to the value of ↵s; this expectation will be born
out in our PS studies below. Because ↵s is always multiplied by a color factor, though, knowing the
precise quark/gluon composition of a sample is essential, as discussed in Sec. 1.43. In practice, the PS
studies and the analytic studies that follow (see Sec. 1.5) include higher-order effects, such as subleading
terms in the splitting functions, that violate Casimir scaling.



21Beyond ⍺s(mZ) 

Jet (substructure) allows us to probe QCD at many scales.  The running 
of the strong coupling can be used as an indirect probe of BSM.
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(
p
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This approach complements 
direct searches, as this is 
agnostic about the decay 

properties of new particles.

(Intersting discussion: what is 
the scale probed by a 
particular observable?  

Seems not a trivial question)



22Jet Substructure and Emergent QCD

As in many other areas of physics, studying correlations 
gives us a handle on emergent properties of QCD



23

We can study QCD 
entanglement from 

correlations in the radiation 
patterns of pairs of jets.

An exciting laboratory 
for this work is boosted 
W bosons, a copious 

source of singlet → jets.

Example 1: Jet pull

Correlations Part I: Jet Pull
As in many other areas of physics, studying correlations 

gives us a handle on emergent properties of QCD
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???

As in many other areas of physics, studying correlations 
gives us a handle on emergent properties of QCD
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???

As in many other areas of physics, studying correlations 
gives us a handle on emergent properties of QCD
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Here is an observable 
where we can’t 

distinguish between 
“entanglement” turned 

“on” and “off” !

Theory predictions are 
challenging, but in 

development

(see A. Larkoski, S. Marzani, C. 

Wu, PRD 99 (2019) 091502)

Eur. Phys. J. C 78 (2018) 847Example 1: Jet pull
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???

As in many other areas of physics, studying correlations 
gives us a handle on emergent properties of QCD



Example 2: g → bb

Gluon splitting to bottom 
quarks gives us the only 
~pure access to QCD 

splitting functions.

(and of course, this is 
a very important 

process for Higgs)

instead of parton-splitting e�ects) and were limited in their kinematic reach due in part to small datasets
and low momentum transfers.

The high transverse momentum and low angular separation regime for g ! bb̄ can be probed at the LHC
using b-tagged small-radius jets within large-radius jets. This topology is used to calibrate b-tagging
in dense environments [50–52] and is studied phenomenologically [53, 54]. The measurement shown
in this paper builds on these studies by using data collected by the ATLAS detector from

p
s = 13 TeV

pp collisions in order to perform a di�erential cross-section measurement of g ! bb̄ inside jets at high
transverse momentum – see Figure 1 for a representative Feynman diagram. Small-radius jets built from
charged-particle tracks are used as proxies for b-quarks and can be used as precision probes of the small
opening-angle regime.

This paper is organized as follows. After a brief introduction to the ATLAS detector in Section 2, the
data and simulations used for the measurement are documented in Section 3. Section 4 describes the
event selection and Section 5 lists and motivates the observables to be measured. The key challenge
in the measurement is the estimation of background processes, which is performed using a data-driven
approach illustrated in Section 6. The data are unfolded to correct for detector e�ects to allow direct
comparisons to particle-level predictions. This procedure is explained in Section 7 and the associated
systematic uncertainties are detailed in Section 8. The results are presented in Section 9 and the paper
concludes with Section 10.

q

g

q

b

b̄

Figure 1: A representative diagram for the high-pT g ! bb̄ process studied in this paper.

2 ATLAS detector

The ATLAS detector [55] is a multipurpose particle detector with a forward/backward-symmetric cylindrical
geometry. The detector has a nearly 4⇡ coverage in solid angle1 and consists of an inner tracking detector,
electromagnetic and hadronic calorimeters, and a muon spectrometer. The inner detector (ID) is surrounded
by a superconducting solenoid providing a 2 T magnetic field and covers a pseudorapidity range of |⌘ | < 2.5.
The ID is composed of silicon pixel and microstrip detectors as well as a transition radiation tracker. For
the LHC

p
s = 13 TeV run, the silicon pixel detector has been upgraded to include an additional layer

close to the beam interaction point [56]. The lead/liquid-argon electromagnetic sampling calorimeters
measure electromagnetic energies with high granularity for the pseudorapidity region of |⌘ | < 3.2. Hadron

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r , �) are used in the transverse plane, � being the azimuthal angle around the beam pipe. The
pseudorapidity is defined in terms of the polar angle as ⌘ = � ln tan(polar angle/2).

3

27Correlations Part II: g → bb̄
As in many other areas of physics, studying correlations 

gives us a handle on emergent properties of QCD



Example 2: g → bb

instead of parton-splitting e�ects) and were limited in their kinematic reach due in part to small datasets
and low momentum transfers.

The high transverse momentum and low angular separation regime for g ! bb̄ can be probed at the LHC
using b-tagged small-radius jets within large-radius jets. This topology is used to calibrate b-tagging
in dense environments [50–52] and is studied phenomenologically [53, 54]. The measurement shown
in this paper builds on these studies by using data collected by the ATLAS detector from

p
s = 13 TeV

pp collisions in order to perform a di�erential cross-section measurement of g ! bb̄ inside jets at high
transverse momentum – see Figure 1 for a representative Feynman diagram. Small-radius jets built from
charged-particle tracks are used as proxies for b-quarks and can be used as precision probes of the small
opening-angle regime.

This paper is organized as follows. After a brief introduction to the ATLAS detector in Section 2, the
data and simulations used for the measurement are documented in Section 3. Section 4 describes the
event selection and Section 5 lists and motivates the observables to be measured. The key challenge
in the measurement is the estimation of background processes, which is performed using a data-driven
approach illustrated in Section 6. The data are unfolded to correct for detector e�ects to allow direct
comparisons to particle-level predictions. This procedure is explained in Section 7 and the associated
systematic uncertainties are detailed in Section 8. The results are presented in Section 9 and the paper
concludes with Section 10.

q

g

q

b

b̄

Figure 1: A representative diagram for the high-pT g ! bb̄ process studied in this paper.

2 ATLAS detector

The ATLAS detector [55] is a multipurpose particle detector with a forward/backward-symmetric cylindrical
geometry. The detector has a nearly 4⇡ coverage in solid angle1 and consists of an inner tracking detector,
electromagnetic and hadronic calorimeters, and a muon spectrometer. The inner detector (ID) is surrounded
by a superconducting solenoid providing a 2 T magnetic field and covers a pseudorapidity range of |⌘ | < 2.5.
The ID is composed of silicon pixel and microstrip detectors as well as a transition radiation tracker. For
the LHC

p
s = 13 TeV run, the silicon pixel detector has been upgraded to include an additional layer

close to the beam interaction point [56]. The lead/liquid-argon electromagnetic sampling calorimeters
measure electromagnetic energies with high granularity for the pseudorapidity region of |⌘ | < 3.2. Hadron

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r , �) are used in the transverse plane, � being the azimuthal angle around the beam pipe. The
pseudorapidity is defined in terms of the polar angle as ⌘ = � ln tan(polar angle/2).
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As in many other areas of physics, studying correlations 
gives us a handle on emergent properties of QCD
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See also Fischer, Lifson, Skands, 
EPJC 77 (2017) 719

Gluons seems “more 
polarized” in data than in 

our predictions.  Slight 
improvement from matrix 

element corrections 
(Sherpa 2 → 3).
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Also find that the 
flavor fractions are 
not quite correct?

(determined from a fit 
to the displacement 
of tracks inside jets)

As in many other areas of physics, studying correlations 
gives us a handle on emergent properties of QCD
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Key experimental 
challenge: 


tracking inside dense 
environments

First measurement 

of the Lund jet plane!  


…powerful tool for 
isolating hadronization, 
parton shower effects, 
and fixed-order effects
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Correlations Part IV: Isolate the Physics

(now also measurements from other experiments)
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Key experimental 
challenge: 


tracking inside dense 
environments

First measurement 

of the Lund jet plane!  


…powerful tool for 
isolating hadronization, 
parton shower effects, 
and fixed-order effects
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It is not just about resolution - we have 
rigorous per-track uncertainties, also 
taking into account density effects.

…what about on the 
theory side?
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Fig. III.6: Examples of parton shower configurations required to go beyond leading order.

the flavor-changing DGLAP kernels P
qq

Õ and Pqq̄. We will call this “triple-collinear" correction.
The calculation of these corrections has helped define a method to use the overlap with lowest
order to construct locally finite splitting rates at NLO. Numerically however, this correction is
expected to be small to modest. The soft limits of all the diagrams in Fig. III.6 was considered
in [898], which also included all necessary virtual corrections obtained by moving the cuts in
the individual diagrams in all possible ways. We will call this “double-soft" correction6. The
numerical e�ect of these double-soft corrections is expected to be appreciable.

In this study, we use the implementation of the triple-collinear and double-soft corrections
in Dire to produce NLO pseudo-data, with the aim of highlighting the characteristic new
features of either correction.

Events are treated as sets of particles, with each particle pi specified by its momentum
p̨µ

i
, mass, and particle-type. The events are rotated to a consistent orientation by vertically

aligning the second moment of the energy flow [899]. This is accomplished by diagonalizing
the spatial component of I

µ‹ =
qM

i=1 Eiv
µ

i
v‹

i , where vµ

i
= pµ

i
/Ei is the particle velocity. As a

machine learning architecture to process the entire events in their natural representation as sets
of particles, we use Particle Flow Networks (PFNs) [895] (see also Ref. [900]). Intuitively, PFNs
learn a collection of additive observables which are processed by a fully-connected network. A
PFN acts on an event with M particles pi as PFN({pi}

M

i=1) = F
1qM

i=1 �(pi)
2
, where F and �

are parameterized by dense networks. The network sizes of F and � are identical to those in
Ref. [895], with a latent space dimension of 256. The train, validation, and test set sizes were
175k, 10k, and 15k, respectively. The PFN classifiers were trained for 25 epochs with a batch
size of 500.

Receiver operating characteristic (ROC) curves from the machine learning classifiers are
presented in Fig. III.7. These curves show the performance of a classifier designed to distinguish
the default simulation from one that includes either the triple collinear splitting function or

6 It should be noted that there is overlap between the triple-collinear and double-soft limits. A complete
di�erential calculation that consistently (i.e. without overlap) includes all components has yet to be produced.
Thus, we assess the potential to find observables that discriminate between leading-order and next-to-leading
order results separately, for triple-collinear, and for double-soft corrections.
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Fig. III.7: Receiver operating characteristic (ROC) curves for pseudo-data with and without the
triple collinear splitting functions (left) and with and without the double soft splitting functions
(right). The performance of a classifier using just the jet constituent multiplicity is compared
with a deep neural network acting on the full observable jet phase space. For reference, a
classifier that cannot distinguish between the two models is depicted with a dashed line. Better
classifiers are up and to the right.

the double soft splitting function. A neural network is compared with a simple classifier that
only uses the jet constituent multiplicity. We find that the triple-collinear corrections (which
integrate to the DGLAP kernels P

qq
Õ and Pqq̄) is di�cult to pinpoint. It is somewhat surprising

that the impact is almost vanishing. Furthermore, we find that double-soft corrections have
sizable impact, and can easily be filtered out of the data. This is expected, since the theoretical
description of soft gluons changes significantly. It is currently unclear what features the neural
network is using to distinguish the default simulation from the one that includes the double
soft splitting function. Figure III.7 indicates that the network is using more than just the jet
constituent multiplicity. Future studies will be required to identify a suitable observable to
measure (perhaps the neural network itself).

1.5 q/g tagging in VBF and VBS
Quark/gluon tagging is a key benchmark for jet substructure studies and has been extensively
studied elsewhere (see e.g. Ref. [737, 843]). Tagging quark jets in the context of VBF/VBS
analyses has also been explored recently by CMS [877]. With recent advances in q/g tagging
and with upcoming detector upgrades to extend q/g tagging capabilities in the forward regions
of ATLAS and CMS, it is prudent to revisit this important topic for VBF/VBS analyses. In
general, this task has two aspects: (1) using q/g tagging to distinguish electroweak signals from
continuum QCD backgrounds [12,874–876] and (2) using these techniques to di�erentiate signal
production mechanisms. In particular, VBF Higgs production can have a similar phenomenology
to gluon-gluon fusion Higgs production (ggH) produced in association with two jets. For various
global fits, it is important to be able to statistically di�erentiate the various production modes.

A further complication to q/g studies in general is that usually other analyses selections
are optimized first and then q/g tagging is applied near the end of a selection chain. This
can make the use of q/g tagging suboptimal and one may gain from relaxing other traditional
requirements (e.g. mjj or �÷jj) while tightening the q/g tagging selection. At Les Houches 2019,
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relatively small (qjet
T ⌧ p e

T ⇠ p jet
T ) [33]. This corresponds to a small deviation from ⇡ in azimuthal angle between the

lepton and jet axes (��jet
⌘ |⇡ � (�e

� �jet)|) in the transverse plane. TMD PDFs are an essential ingredient for the
quantum tomography of the proton that probes the origin of its spin, mass, size, and other properties.

Figure 1. A display of the H1 tracker and calorimeter detectors, showing a DIS event with approximate Born kinematics,
eq ! eq, which yields a lepton and a jet in a back-to-back topology perpendicular to the beam axis.

The energy dependence of TMD PDFs can also probe unexplored aspects of QCD as they follow a more complex set
of evolution equations than collinear PDFs [37–39], involving components that cannot be calculated using perturbation
theory. A complete description remains open in part because of a lack of precise measurements over a wide kinematic
range. Existing constraints from DIS data are at very low momentum transfer (Q2

⇡ 1 GeV2) from fixed-target
experiments [40–44]. Drell-Yan production in fixed target [45–49] and collider experiments [50–62] can provide TMD-
sensitive measurements up to high scales (Q2

⇡ 10000 GeV2). The HERA experiments can cover the entire kinematic
region Q2

⇡ 1�10000 GeV2 so they can yield a key ingredient to connecting the existing experimental and theoretical
information, including with lattice QCD calculations, which have made significant advances in describing aspects of
TMD evolution [63, 64].

This Letter presents a measurement of jet production in neutral current (NC) DIS events close to the Born level
configuration, eq ! eq. The cross section of this process is measured differentially as a function of the jet transverse
momentum and pseudorapidity, as well as lepton-jet momentum imbalance and azimuthal angle correlation. This
measurement probes a range of QCD phenomena, including TMD PDFs and their evolution with energy. A novel
machine learning (ML) technique called MultiFold [65, 66] is used to correct for detector effects for the first time in
any experiment, enabling the simultaneous and unbinned unfolding of the target observables.

Experimental method. The H1 detector1 [67–71] is a general purpose particle detector with cylindrical geometry.
The main sub-detectors used in this analysis are the inner tracking detectors and the Liquid Argon (LAr) calorimeter,
which are both immersed in a magnetic field of 1.16 T provided by a superconducting solenoid. The central tracking
system, which covers 15� < ✓ < 165� and the full azimuthal angle, consists of drift and proportional chambers that
are complemented with a silicon vertex detector in the range 30� < ✓ < 150� [72]. It yields a transverse momentum
resolution for charged particles of �pT/pT = 0.2% pT/GeV � 1.5%. The LAr calorimeter, which covers 4� < ✓ < 154�

and full azimuthal angle, consists of an electromagnetic section made of lead absorbers and a hadronic section with

1 This measurement uses a right handed coordinate system defined such that the positive z direction points in the direction of the proton
beam and the nominal interaction point is located at z = 0. The polar angle ✓, is defined with respect to this axis. The pseudorapidity
is defined as ⌘lab = � ln tan(✓/2).
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Figure 2. Measured cross sections, normalized to the inclusive jet production cross section, as a function of the jet transverse
momentum (top left) and jet pseudorapidity (top right), lepton-jet momentum balance (qjet

T
/Q) (lower left), and lepton-jet

azimuthal angle correlation (��jet) (lower right). Predictions obtained with the pQCD (corrected by hadronization effects,
“NP”) are shown as well. Predictions obtained with the TMD framework are shown for the qjet

T
/Q and ��jet cross sections. At

the bottom, the ratio between predictions and the data are shown. The gray bands represent the total systematic uncertainty
of the data; the bars represent the statistical uncertainty of the data, which is typically smaller than the marker size. The error
bar on the NNLO calculation represents scale, PDF, and hadronization uncertainties. The statistical uncertainties on the MC
predictions are smaller than the markers.
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What is jet substructure good for?

A probe of fundamental 
and emergent properties of 

the strong force

1. Fundamental parameters of the SM

2. BSM searches using small deviations from SM

3. Quantum properties of inherently exciting emergent pheno

4. Develop / tune Parton Shower Monte Carlo (to aid other 

searches / measurements)
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53Extra nugget 1: Jet Charge
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Weight the tracks 
with their charge!

CHAPTER 1. JET CHARGE 3

1.1 Background

The jet charge is defined in Sec. 1.1.1 and its important properties are reviewed
in Sec. 1.1.2. Section 1.1.3 describes the theoretical predictions for the jet charge
distribution. The section ends in Sec. 1.1.4 with some comments about charge tagging.

1.1.1 Constructing the jet charge

There is no unique way to define the jet charge. The most naïve construction is to add
the charge of all tracks associated with a jet. However, this scheme is very sensitive
to lost or extraneous soft radiation. Therefore, a weighting scheme is introduced to
suppress fluctuations. Using the tracks assigned to a jet by ghost association, the jet
charge QJ of a jet J is calculated using a transverse-momentum-weighting scheme [5]:

QJ =
1

(pTJ)

X

i2Tracks

qi ⇥ (pT,i)
, (1.1)

where Tracks is the set of tracks associated with jet J, qi is the electric charge
of track i in units of the positron charge, pT,i is transverse momentum of track i,
 is a free regularization parameter, and pTJ is the transverse momentum of the
calorimeter jet. The distributions of QJ for various jet flavors are shown in Fig. 1.2
for  = 0.3. In the simulation, there is a clear relationship between the jet charge
and the initiating parton’s charge, as up-quark jets tend to have a larger jet charge
than gluon jets. Furthermore, gluon jets tend to have a larger jet charge than down-
quark jets. However, the jet charge distribution is already broad at particle level and
the jet charge response (Qparticle-level - Qdetector-level) resolution is comparable to the
differences in the means of the distributions for different flavors, so one can expect
only small changes in the inclusive jet charge distribution for changes in the jet flavor
composition. The three narrow distributions on top of the bulk response distribution
in Fig. 1.2(b) are due to cases in which only one or two charged particles dominate the
jet charge calculation at particle level. The two off-center peaks are due to cases in
which one of the two high-pT-fraction tracks is not reconstructed and the widths of the

Allows us to look 
inside the proton “by 

eye” - more up 
quarks at high x!

Data/MC

Reco/Particle

Increases: more up-quark jets
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What happens when we ‘remove’ the PDF?  

Does the jet charge for jets of a particular type depend on pT?

9
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FIG. 6. h(Qi
1)

2i at LO and NLO for kT -like quark jets (left panel) and gluon jets (right panel) with R=0.5 and  = 1. The
bands correspond to the perturbative uncertainties for ⇢ = 1.
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FIG. 7. The average charge for an anti-kT quark jet is shown as function of the jet energy E for various values of  and R. The
Pythia results for d (u) quarks are shown as squares (circles). The plots are normalized to 1 at E = 100 GeV and R = 0.5,
which removes the dependence on the nonperturbative input and thus the quark flavor.

normalized to 1 at E = 100 GeV, which removes the de-
pendence on the nonperturbative parameter in Eq. (6).
At LO we do not include the NLO jet algorithm cor-
rections, i.e. we take eJij = 2(2⇡)3�ij . As Fig. 5 shows,
the NLO corrections reduce the average jet charge by a
non-negligible amount.

The perturbative uncertainties are estimated by vary-
ing the renormalization scale µ up and down by a factor
of 2. To keep the normalization point fixed, we simulta-
neously vary the scale in the normalization. We show un-
certainty bands both with (darker) and without (lighter)
this additional prescription in Fig. 5. In all the following
plots we will use this additional prescription, which keeps
the normalization point fixed and leads to smaller uncer-
tainties. However, since these uncertainty bands do not
quite overlap, they may be a bit too optimistic. In ad-
dition, the prescription causes the NLO band to be only
slightly narrower than the LO result. (Neither of these
issues are present for the lighter uncertainty bands.)

In Fig. 6 we study the convergence of h(Qi
)

2
i for i =

q, g, which enters in the width in Eq. (10). We can no
longer completely remove the nonperturbative input by
normalizing, because of the mixing between quarks and
gluons. We therefore make an assumption for

⇢ =
h(Qg

)
2
i

h(Qq
)2i

at µ0 = 1 GeV, (40)

which we for simplicity take equal for all five light quark
flavors. The solid curves and uncertainty bands corre-
spond to ⇢ = 1 and the dotted curves in Fig. 6 corre-
spond to ⇢ = 2. We find again that the convergence is
reasonable. The mixing causes the width to reduce more
slowly as function of E. (For quarks the e↵ect of the
mixing is stronger if ⇢ is larger, whereas for gluons it is
the opposite way around.)

1209.2421 & 1209.3019

(scale violation)
hQJi = [1 +O(↵s)]

P
h Qh

eDh
q (, E ⇥R)

pT

hQi
d

dpT
hQi = ↵s

⇡
ePqq() ⌘ c()

Moment of a 
fragmentation function

h = hadron

Moment of a 
splitting function

non-perturbative…but we know 
how it evolves with scale!

Prediction: 

c < 0 and dc/dk < 0
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54Jet Charge Beyond PDFs
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7.2 Exclusive Interpretations699

In addition to using the trends in the jet charge distribution to learn about PDFs, one can use PDFs to ex-700

tract information about jets of a particular flavour. These exclusive interpretations rely on flavour fraction701

information in PDFs and matrix element calculations to extract the jet charge distribution for particular702

jet flavours in each pT bin. The required non-perturbative information is summarized in Fig. 66. There703

is a clear increasing trend in the valence quark PDF at high pT , in particular for the up quarks. Note704

that jets with flavours other than up/down/anti-up/anti-down/gluon are not included in Fig. 66 and give a705

negligible contribution (⇠ 2%) in the highest pT bins.706
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Figure 66: The flavour fraction of the more forward and more central in bins of jet pT . The right plot is
the ratio of the fractions for the more forward jet over the more central jet.

7.2.1 Extracting the Up/Down Jet Charges707

One simple way of extracting the up and down average jet charges is to exploit the di↵erence in flavour708

fractions shown in Fig. 66 between the more forward the more central jets. Assuming the pT spectra for709

the more forward and the more central jet are identical (which is nearly so - see Fig. 14 and Fig. 15) and710

that the average jet charge of the sum of flavours that are not up/down/anti-up/anti-down is zero, we have711

in each bin i of pT :712

hQforward
i i =

⇣
f forward
up,i � f forward

anti-up,i

⌘
Qup

i + ( f forward
down,i � f forward

anti-down,i)Q
down
i (19)

hQcentral
i i =

⇣
f central
up,i � f central

anti-up,i

⌘
Qup

i + ( f central
down,i � f central

anti-down,i)Q
down
i . (20)

From Fig. 66, we know all of the fractions f and so in each bin of pT , this is a system of two equations and713

two unknowns for which we can extract the up and down jet charges. The discussion of the i dependance714

on Qup
i and Qdown

i will be discussed in Sec. 7.2.2. In principle, this extraction can happen in each of the715

10 bins of pT , but we find that there are two competing forces which make the extraction less interesting716

in the very high and very low pT bins:717

Can exploit the 

h-dependence of the 

flavor fractions f to extract 
the up- and down-quark 
jet charge in each pT bin.
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7.2.3 Scale Violation - Extraction from the Data862

We cannot measure the jet charge of individual quark flavours, so we must take the flavour fractions per863

pT bin from the MC (from Fig. 66). The formula per quark flavour was derived in the previous section:864

pT

hQi

d
dpT
hQi = c, (33)

where c is the scale violation parameter given in Eq. 32 for various values of . The solution is given by865

Q = ↵pc
T , (34)

where ↵ is some constant of integration. Since c ⌧ 1, we can ignore the O(c2) terms in the Taylor866

expansion:867

Q(pT ) = Q̄(1 + c log(pT/ p̄T )) + O(c2), (35)

where Q̄ = Q( p̄T ) for some fixed (but arbitrary) pT pT,0. Therefore, for each pT bin i, we have the868

following model of the average jet charge869

hQii ⇡
X

f

↵ f ,iQ̄ f (1 + c f log(pT,i/p̄T )), (36)

where ↵ f ,i is the fraction of flavour f in bin i, Q̄ f is the average jet charge of flavour f , c f is a scale870

violation parameter (dimensionless), and p̄T is a fixed energy.871

Fitting the model in Eq. 36 directly to the data is not practical because there are three parameters872

(if c f = c for all f as in the prediction) and only 10 pT bins, some of which have very little sensitivity873

due to low fractions ↵ or large uncertainties on hQii. One way around this is to extract Q̄ f in one bin874

of pT (and call this p̄T ) as described in Sec. 7.2.1, and then Eq. 36 is highly constrained and has only875

one parameter for which each other bin of pT gives an estimate. Figure 68 shows the extracted value876

c for each bin of pT after extracting Q̄up and Q̄down from the pT bin 600 GeV < pT < 800 GeV (in877

particular this bin cannot be further used to extract c). Both the more forward and more central jet878

can be used to extract the scale violating parameter. The predicted value of c < 0 and dc()/d < 0.879

The results in Fig. 68 are tabulated by performing a �2 across bins, taking the sum in quadrature of the880

statistical uncertainty and the systematic uncertainty as the denominator for each term in the �2. The881

systematic uncertainties are propagated through the �2 procedure treated as fully correlated between882

bins and the statistical uncertainty is treated coherently by bootstrapping. Figure 69 shows the result of883

the �2 combination procedure and compares the values to the theory predictions. The data support the884

prediction that c < 0.885
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57Extra nugget 2: how to represent a jet?
See 1709.04464 for image refs.
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See 1709.04464 for image refs.

How to represent our data?
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Figure 9. Left: A typical signal event image. Right: The output of the neural network on the left
image, after rotation in the „ direction by the given number of pixels.

4 High-pT Higgs for BSM Physics

Beyond the discovery of the H æ bb̄ decay, a major motivation for the study of boosted
H æ bb̄ final states in particular is that it allows one to study the structure of the gg æ H

process at high pT . While in the Standard Model this is primarily due to the contribution of
a virtual top quark loop, the total cross section ‡(gg æ H) is only sensitive to the low-energy
limit of this loop, in which it is extremely well approximated by a dimension-five operator
with no dependence on mt. At pT & 2mt, this is no longer true, as the physical momentum
running through the loop is comparable to mt, allowing potential new physics contributions
to the loop to be disentangled that are not observable for the total cross section by observing
the pT dependence. This general observation has been explored in Refs. [7–11]. In this section
we apply our machine learning techniques and illustrate how the improved significance for
H æ bb̄ translates to improved bounds on BSM physics.

We are interested in probing new physics in the gg æ H production loop that can be
modeled as dimension-6 operators. Following Ref. [7], the operators modifying gg æ H

production cross section are parameterized as

Le� = LSM +
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Here Gaµ‹ is the QCD field strength, and ÂGaµ‹ = 1
2‘µ‹‡flGa

‡fl its dual. After electroweak
breaking, the induced operators a�ecting the coupling of the Higgs boson to tops and gluons
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4 High-pT Higgs for BSM Physics

Beyond the discovery of the H æ bb̄ decay, a major motivation for the study of boosted
H æ bb̄ final states in particular is that it allows one to study the structure of the gg æ H

process at high pT . While in the Standard Model this is primarily due to the contribution of
a virtual top quark loop, the total cross section ‡(gg æ H) is only sensitive to the low-energy
limit of this loop, in which it is extremely well approximated by a dimension-five operator
with no dependence on mt. At pT & 2mt, this is no longer true, as the physical momentum
running through the loop is comparable to mt, allowing potential new physics contributions
to the loop to be disentangled that are not observable for the total cross section by observing
the pT dependence. This general observation has been explored in Refs. [7–11]. In this section
we apply our machine learning techniques and illustrate how the improved significance for
H æ bb̄ translates to improved bounds on BSM physics.

We are interested in probing new physics in the gg æ H production loop that can be
modeled as dimension-6 operators. Following Ref. [7], the operators modifying gg æ H
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jets with a two-prong substructure using the double b-tag, standard tagging observables provide
minimal gains, and the primary difference between the two decays are their color flows, shown
in Fig. 6, with the Higgs being a color singlet, and the gluon a color octet. The gluon radiates
much more widely away from the dipole, as is clearly seen in the jet images in Fig. 5. ijm

(Are there any experimental benefits of Rb2? It might be cleaner to just use
beta. Rb2 is also IRC unsafe –ijm)

Having identified from the neural network that significant discrimination power can be
extracted from the jet, and building on the intuition from the jet images and our physical
understanding of the decay channels, that this information should be contained in the color
flow, we now show that this additional discrimination power can largely be extracted using a
simple observable to identify the color flow. A number of observables exist to probe the color
flow within a jet. Here we consider the recently introduced observable �3 [47]
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where � j
n is the n-jettiness observable [37, 38] with angular exponent j defined with the winner

takes all axes [68].
In Fig. 7 we show an SIC curve comparing the performance of the �3 observable with the

full neural network architecture. The full neural network sets an upper bound on the achievable
discrimination power, and we find that the majority of the improved discrimination power
identified by the neural network is reproduced by the simple �3 observable. This is promising
for immediate application to LHC searches. It also supports our intuition that the dominant
remaining information lies in the color flow. Since much effort has been given to two-prong
tagging, and relatively limited attention has been payed to the study of color flow, we believe
that variable such as �3 may be more widely applicable to improving jet substructure searches.
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Figure 6. Average jet images for the 100 most background like (top) and signal like (bottom) jets.
The jet images are weighted by the pT in the first column, the neutral pT in the second column, and
the charge multiplicity in the third column. Due to the di�erent color flows, the signal like (H æ bb̄)
jets have a more contained color flow pattern.

3.3.1 Jet Substructure

As emphasized earlier, the H æ bb̄ search is di�erent from other boosted hadronically decaying
massive boson studies because the application of double b-tagging already enforces a two-prong
topology. Therefore, two-prong tagging is not as useful. Studies to further optimize the event
selection with N2 confirm this expectation — little significance gain is possible using only this
state-of-the-art two-prong tagging technique (see also Ref. [37]). One of the attractive features
of jet images is that they can be directly inspected to visualize the information content. For
example, Fig. 6 shows the average of the 100 most signal-like and most background-like jets,
according to the neural network. The two-prong structure of both signal and background is
clear in all three channels. The main di�erence between gg æ bb̄ and H æ bb̄ is the orientation
of the radiation between and around the two prongs. As expected due to the di�erent color
structure, the radiation pattern around the two prongs is more spread out for the gluon
case. Figure 7 shows additional images that are split by their value of —3. It is clear from
the images that low —3 values (background-like) pick out subjets with a broader radiation
patterns compared with high —3 (signal-like) images. However, the top plot of Fig. 7 clearly
indicates that —3 is not the same as the neural network, so there is additional information
to learn. Figure 8 tries to visualize the additional information. The distribution of —3 in the
signal is reweighted to be the same as the background so that —3 by itself is not useful for
discrimination. The average images for signal and background look very similar by eye, but
the di�erence of the average images reveals interesting structure. These structures still show
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massive boson studies because the application of double b-tagging already enforces a two-prong
topology. Therefore, two-prong tagging is not as useful. Studies to further optimize the event
selection with N2 confirm this expectation — little significance gain is possible using only this
state-of-the-art two-prong tagging technique (see also Ref. [37]). One of the attractive features
of jet images is that they can be directly inspected to visualize the information content. For
example, Fig. 6 shows the average of the 100 most signal-like and most background-like jets,
according to the neural network. The two-prong structure of both signal and background is
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of the radiation between and around the two prongs. As expected due to the di�erent color
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case. Figure 7 shows additional images that are split by their value of —3. It is clear from
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patterns compared with high —3 (signal-like) images. However, the top plot of Fig. 7 clearly
indicates that —3 is not the same as the neural network, so there is additional information
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Figure 9. Left: A typical signal event image. Right: The output of the neural network on the left
image, after rotation in the „ direction by the given number of pixels.

4 High-pT Higgs for BSM Physics

Beyond the discovery of the H æ bb̄ decay, a major motivation for the study of boosted
H æ bb̄ final states in particular is that it allows one to study the structure of the gg æ H

process at high pT . While in the Standard Model this is primarily due to the contribution of
a virtual top quark loop, the total cross section ‡(gg æ H) is only sensitive to the low-energy
limit of this loop, in which it is extremely well approximated by a dimension-five operator
with no dependence on mt. At pT & 2mt, this is no longer true, as the physical momentum
running through the loop is comparable to mt, allowing potential new physics contributions
to the loop to be disentangled that are not observable for the total cross section by observing
the pT dependence. This general observation has been explored in Refs. [7–11]. In this section
we apply our machine learning techniques and illustrate how the improved significance for
H æ bb̄ translates to improved bounds on BSM physics.

We are interested in probing new physics in the gg æ H production loop that can be
modeled as dimension-6 operators. Following Ref. [7], the operators modifying gg æ H

production cross section are parameterized as
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Here Gaµ‹ is the QCD field strength, and ÂGaµ‹ = 1
2‘µ‹‡flGa

‡fl its dual. After electroweak
breaking, the induced operators a�ecting the coupling of the Higgs boson to tops and gluons
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Having identified from the neural network that significant discrimination power can be
extracted from the jet, and building on the intuition from the jet images and our physical
understanding of the decay channels, that this information should be contained in the color
flow, we now show that this additional discrimination power can largely be extracted using a
simple observable to identify the color flow. A number of observables exist to probe the color
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Figure 6. Average jet images for the 100 most background like (top) and signal like (bottom) jets.
The jet images are weighted by the pT in the first column, the neutral pT in the second column, and
the charge multiplicity in the third column. Due to the di�erent color flows, the signal like (H æ bb̄)
jets have a more contained color flow pattern.

3.3.1 Jet Substructure

As emphasized earlier, the H æ bb̄ search is di�erent from other boosted hadronically decaying
massive boson studies because the application of double b-tagging already enforces a two-prong
topology. Therefore, two-prong tagging is not as useful. Studies to further optimize the event
selection with N2 confirm this expectation — little significance gain is possible using only this
state-of-the-art two-prong tagging technique (see also Ref. [37]). One of the attractive features
of jet images is that they can be directly inspected to visualize the information content. For
example, Fig. 6 shows the average of the 100 most signal-like and most background-like jets,
according to the neural network. The two-prong structure of both signal and background is
clear in all three channels. The main di�erence between gg æ bb̄ and H æ bb̄ is the orientation
of the radiation between and around the two prongs. As expected due to the di�erent color
structure, the radiation pattern around the two prongs is more spread out for the gluon
case. Figure 7 shows additional images that are split by their value of —3. It is clear from
the images that low —3 values (background-like) pick out subjets with a broader radiation
patterns compared with high —3 (signal-like) images. However, the top plot of Fig. 7 clearly
indicates that —3 is not the same as the neural network, so there is additional information
to learn. Figure 8 tries to visualize the additional information. The distribution of —3 in the
signal is reweighted to be the same as the background so that —3 by itself is not useful for
discrimination. The average images for signal and background look very similar by eye, but
the di�erence of the average images reveals interesting structure. These structures still show
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topology. Therefore, two-prong tagging is not as useful. Studies to further optimize the event
selection with N2 confirm this expectation — little significance gain is possible using only this
state-of-the-art two-prong tagging technique (see also Ref. [37]). One of the attractive features
of jet images is that they can be directly inspected to visualize the information content. For
example, Fig. 6 shows the average of the 100 most signal-like and most background-like jets,
according to the neural network. The two-prong structure of both signal and background is
clear in all three channels. The main di�erence between gg æ bb̄ and H æ bb̄ is the orientation
of the radiation between and around the two prongs. As expected due to the di�erent color
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case. Figure 7 shows additional images that are split by their value of —3. It is clear from
the images that low —3 values (background-like) pick out subjets with a broader radiation
patterns compared with high —3 (signal-like) images. However, the top plot of Fig. 7 clearly
indicates that —3 is not the same as the neural network, so there is additional information
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Figure 1. A schematic of the two-stream CNN used in this study. The first stream uses the full
event information, while the second stream uses the jet substructure information. More details on the
architecture are provided in the text.

activations, and stride length of 1. The first convolutional layer in each stream has 32 filters,
and the second convolutional layer in each stream has 64 filters. The dense layer at the
end of each stream has 300 neurons each. Finally, the two dense layers from each stream
are fully connected to an output layer of one neuron with sigmoid activation. In total this
gives 2.6 million trainable parameters in the network. We used the AdaDelta optimizer [94],
with binary cross entropy as our loss function, and used the relatively simple Early Stopping
method as a regularization technique, stopping when the significance improvement of the Higgs
measurement at pmin

T
= 450 GeV stopped improving (with a patience of 2 epochs). We arrived

at this final model after testing the performance (measured by the significance improvement
of the Higgs measurement at pmin

T
= 450 GeV) using di�erent optimizers (AdaDelta [94],

AdaGrad [95], Adam [96]), di�erent activation functions (mainly testing ReLU against leaky
ReLU), and regularization (dropout [97] vs. Early Stopping). Our training was performed
using the Keras [98] Python neural network library with Tensorflow [99] backend, on
Nvidia GeForce 1080 Ti GPUs.

2.2 Inputs and Preprocessing

The inputs to our neural network are jet images [56]. For each event, an image is created for
each stream: one image is the full event image and the other is the image of the hardest jet
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Figure 9. Left: A typical signal event image. Right: The output of the neural network on the left
image, after rotation in the „ direction by the given number of pixels.

4 High-pT Higgs for BSM Physics

Beyond the discovery of the H æ bb̄ decay, a major motivation for the study of boosted
H æ bb̄ final states in particular is that it allows one to study the structure of the gg æ H

process at high pT . While in the Standard Model this is primarily due to the contribution of
a virtual top quark loop, the total cross section ‡(gg æ H) is only sensitive to the low-energy
limit of this loop, in which it is extremely well approximated by a dimension-five operator
with no dependence on mt. At pT & 2mt, this is no longer true, as the physical momentum
running through the loop is comparable to mt, allowing potential new physics contributions
to the loop to be disentangled that are not observable for the total cross section by observing
the pT dependence. This general observation has been explored in Refs. [7–11]. In this section
we apply our machine learning techniques and illustrate how the improved significance for
H æ bb̄ translates to improved bounds on BSM physics.

We are interested in probing new physics in the gg æ H production loop that can be
modeled as dimension-6 operators. Following Ref. [7], the operators modifying gg æ H

production cross section are parameterized as
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Here Gaµ‹ is the QCD field strength, and ÂGaµ‹ = 1
2‘µ‹‡flGa

‡fl its dual. After electroweak
breaking, the induced operators a�ecting the coupling of the Higgs boson to tops and gluons
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a virtual top quark loop, the total cross section ‡(gg æ H) is only sensitive to the low-energy
limit of this loop, in which it is extremely well approximated by a dimension-five operator
with no dependence on mt. At pT & 2mt, this is no longer true, as the physical momentum
running through the loop is comparable to mt, allowing potential new physics contributions
to the loop to be disentangled that are not observable for the total cross section by observing
the pT dependence. This general observation has been explored in Refs. [7–11]. In this section
we apply our machine learning techniques and illustrate how the improved significance for
H æ bb̄ translates to improved bounds on BSM physics.

We are interested in probing new physics in the gg æ H production loop that can be
modeled as dimension-6 operators. Following Ref. [7], the operators modifying gg æ H

production cross section are parameterized as
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Figure 1. A schematic of the two-stream CNN used in this study. The first stream uses the full
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activations, and stride length of 1. The first convolutional layer in each stream has 32 filters,
and the second convolutional layer in each stream has 64 filters. The dense layer at the
end of each stream has 300 neurons each. Finally, the two dense layers from each stream
are fully connected to an output layer of one neuron with sigmoid activation. In total this
gives 2.6 million trainable parameters in the network. We used the AdaDelta optimizer [94],
with binary cross entropy as our loss function, and used the relatively simple Early Stopping
method as a regularization technique, stopping when the significance improvement of the Higgs
measurement at pmin

T
= 450 GeV stopped improving (with a patience of 2 epochs). We arrived

at this final model after testing the performance (measured by the significance improvement
of the Higgs measurement at pmin

T
= 450 GeV) using di�erent optimizers (AdaDelta [94],

AdaGrad [95], Adam [96]), di�erent activation functions (mainly testing ReLU against leaky
ReLU), and regularization (dropout [97] vs. Early Stopping). Our training was performed
using the Keras [98] Python neural network library with Tensorflow [99] backend, on
Nvidia GeForce 1080 Ti GPUs.

2.2 Inputs and Preprocessing

The inputs to our neural network are jet images [56]. For each event, an image is created for
each stream: one image is the full event image and the other is the image of the hardest jet
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See 1709.04464 for image refs.

How to represent our data?



66Sequence learning

One key challenge with images is that they have a fixed size. 

In many contexts, this is ideal, because the data also 
have a fixed size.  However, this is not always the case.

For example, events / jets have a variable number of particles.

One can represent these particles as a sequence 
in order to apply variable-length approaches that 

can access the full feature granularity.



67Sequence learning with RNNs
Flavor tagging (classify jets from b-quark or 

not) has a long history of ML.  Use features of 
the charged-particle tracks inside jets.

In the past, challenging to 
incorporate correlations 

between tracks. 



68Sequence learning with RNNs
Flavor tagging (classify jets from b-quark or 

not) has a long history of ML.  Use features of 
the charged-particle tracks inside jets.

In the past, challenging to 
incorporate correlations 

between tracks. 

Possible with 
RNNs!

ATL-PHYS-PUB-2017-003
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See 1709.04464 for image refs.
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See 1709.04464 for image refs.

How to represent our data?



71Learning with sets

A challenge with sequence learning is that thanks to 
quantum mechanics, there is often no unique order.

A common scenario is that we have a variable-length SET 
of particles and we would like to learn from them directly.

Solution: set learning / point cloud approaches



72Solution 1: Deep sets / Particle flow Networks

1703.06114, 1810.05165

f({x1, . . . , xM}) = F (
M

∑
i=1

Φ(xi))

Factorize the problem into two networks: one that embeds 
the set into a fixed-length latent space and one that acts on 

a permutation invariant operation on that latent space:

Due to the sum, this structure can operate on any 
length set and the order of the inputs doesn’t matter.
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f({x1, . . . , xM}) = F (
M

∑
i=1

Φ(xi))

Factorize the problem into two networks: one that embeds 
the set into a fixed-length latent space and one that acts on 

a permutation invariant operation on that latent space:

Due to the sum, this structure can operate on any 
length set and the order of the inputs doesn’t matter.

• Can readily incorporate 
per-particle features

• Can be made infrared and 
collinear safe (EFN) safe
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75Solution 1: Deep sets / Particle flow Networks

Latent space in IRC safe case is interpretable (and predictable!)
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better Faster to train than 
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improve overall 
performance.
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77Solution 2: Graph methods

Classic CNNs operate on a fixed grid and are 
not invariant under the permutation of points

Can generalize CNNs to act on graphs 

Need to define distances using particle properties
1801.07829 , 1902.08570

Dynamic Graph CNN for Learning on Point Clouds • 1:3

Fig. 2. Le�: Computing an edge feature, ei j (top), from a point pair, xi and xj (bo�om). In this example, h�() is instantiated using a fully connected layer,
and the learnable parameters are its associated weights. Right: The EdgeConv operation. The output of EdgeConv is calculated by aggregating the edge
features associated with all the edges emanating from each connected vertex.

expressed in terms of the metric are invariant to isometric defor-
mation. Representatives of this class include spectral descriptors
such as global point signatures [Rustamov 2007], the heat and wave
kernel signatures [Aubry et al. 2011; Sun et al. 2009], and variants
[Bronstein and Kokkinos 2010]. Most recently, several approaches
wrap machine learning schemes around standard descriptors [Guo
et al. 2014; Shah et al. 2013].

Deep learning on geometry. Following the breakthrough results of
convolutional neural networks (CNNs) in vision [Krizhevsky et al.
2012; LeCun et al. 1989], there has been strong interest to adapt
such methods to geometric data. Unlike images, geometry usually
does not have an underlying grid, requiring new building blocks
replacing convolution and pooling or adaptation to a grid structure.

As a simple way to overcome this issue, view-based [Su et al. 2015;
Wei et al. 2016] and volumetric representations [Klokov and Lempit-
sky 2017; Maturana and Scherer 2015; Tatarchenko et al. 2017; Wu
et al. 2015]—or their combination [Qi et al. 2016]—“place” geometric
data onto a grid. More recently, PointNet [Qi et al. 2017b,c] exempli-
�es a broad class of deep learning architectures on non-Euclidean
data (graphs and manifolds) termed geometric deep learning [Bron-
stein et al. 2017]. These date back to early methods to construct
neural networks on graphs [Scarselli et al. 2009], recently improved
with gated recurrent units [Li et al. 2016] and neural message pass-
ing [Gilmer et al. 2017]. Bruna et al. [2013] and Hena� et al. [2015]
generalized convolution to graphs via the Laplacian eigenvectors
[Shuman et al. 2013]. Computational drawbacks of this foundational
approach were alleviated in follow-up works using polynomial [Def-
ferrard et al. 2016; Kipf and Welling 2017; Monti et al. 2017b, 2018],
or rational [Levie et al. 2017] spectral �lters that avoid Laplacian
eigendecomposition and guarantee localization. An alternative def-
inition of non-Euclidean convolution employs spatial rather than
spectral �lters. The Geodesic CNN (GCNN) is a deep CNN on meshes
generalizing the notion of patches using local intrinsic parameteriza-
tion [Masci et al. 2015]. Its key advantage over spectral approaches
is better generalization as well as a simple way of constructing
directional �lters. Follow-up work proposed di�erent local chart-
ing techniques using anisotropic di�usion [Boscaini et al. 2016]
or Gaussian mixture models [Monti et al. 2017a; Veličković et al.
2017]. In [Halimi et al. 2018; Litany et al. 2017b], a di�erentiable
functional map [Ovsjanikov et al. 2012] layer was incorporated into

a geometric deep neural network, allowing to do intrinsic structured
prediction of correspondence between nonrigid shapes.
The last class of geometric deep learning approaches attempts

to pull back a convolution operation by embedding the shape into
a domain with shift-invariant structure such as the sphere [Sinha
et al. 2016], torus [Maron et al. 2017], plane [Ezuz et al. 2017], sparse
network lattice [Su et al. 2018], or spline [Fey et al. 2018].
Finally, we should mention geometric generative models, which

attempt to generalize models such as autoencoders, variational au-
toencoders (VAE) [Kingma and Welling 2013], and generative adver-
sarial networks (GAN) [Goodfellow et al. 2014] to the non-Euclidean
setting. One of the fundamental di�erences between these two set-
tings is the lack of canonical order between the input and the output
vertices, thus requiring an input-output correspondence problem
to be solved. In 3D mesh generation, it is commonly assumed that
the mesh is given and its vertices are canonically ordered; the gen-
eration problem thus amounts only to determining the embedding
of the mesh vertices. Kostrikov et al. [2017] proposed SurfaceNets
based on the extrinsic Dirac operator for this task. Litany et al.
[2017a] introduced the intrinsic VAE for meshes and applied it to
shape completion; a similar architecture was used by Ranjan et al.
[2018] for 3D face synthesis. For point clouds, multiple generative
architectures have been proposed [Fan et al. 2017; Li et al. 2018b;
Yang et al. 2018].

3 OUR APPROACH
We propose an approach inspired by PointNet and convolution
operations. Instead of working on individual points like PointNet,
however, we exploit local geometric structures by constructing a
local neighborhood graph and applying convolution-like operations
on the edges connecting neighboring pairs of points, in the spirit
of graph neural networks. We show in the following that such an
operation, dubbed edge convolution (EdgeConv), has properties lying
between translation-invariance and non-locality.
Unlike graph CNNs, our graph is not �xed but rather is dynam-

ically updated after each layer of the network. That is, the set of
k-nearest neighbors of a point changes from layer to layer of the
network and is computed from the sequence of embeddings. Prox-
imity in feature space di�ers from proximity in the input, leading
to nonlocal di�usion of information throughout the point cloud. As

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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Classic CNNs operate on a fixed grid and are 
not invariant under the permutation of points

Can generalize CNNs to act on graphs 

Need to define distances using particle properties

CMS DP-2020/002

Competitive 
performance to 

other state-of-the-
art methods

6

Figure 1. Performance of the DeepAK8 and ParticleNet algorithms for identifying hadronically decaying top
quarks. A selection on the jet mass, 105 < mSD < 210 GeV, is applied in addition to the ML-based identification
algorithm when evaluating the signal and background efficiencies. For the signal (background), the generated
top quarks (other quarks and gluons) are required to satisfy 500 < pT < 1000GeV and |η| < 2.4.
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79Bonus: equivariance (=covariance)

e.g. 2203.06153

I’ve already mentioned permutation invariance 
as a symmetry that point cloud models respect.

What about other symmetries?  What if we want 
the model to not be invariant but covariant?
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shows the intrinsic and prediction resolutions from this
test. Compared to the prediction for the tt̄H sample, the
prediction for tt̄tt̄ is worse. However, the intrinsic resolu-
tion in the tt̄tt̄ sample is also worse than that in the tt̄H
sample, suggesting that the top quarks in tt̄tt̄ events are
inherently more complex and challenging to reconstruct.
We expect the gap between the intrinsic and CPT’s resolu-
tion can be reduced by further architectural improvements
and more training data. We stress that the exploding
combinatorics in tt̄tt̄ events render reconstruction-based
methods prohibitively expensive to be successfully applied
in this setting, whereas we can easily apply CPT without
any modification. To predict top quarks’ kinematics from
N jets, a standard reconstruction-based method has a
super-exponential computational complexity of O(N !),
the number of all possible permutations within N objects,
while CPT only has a polynomial complexity of O(N2

)

since the attention mechanism only involves pairwise in-
teractions among the objects.

TABLE II: Summary of resolutions of top quark four-
momentum components in various scenarios in the tt̄tt̄
sample.

�pT �y ��

Intrinsic 0.19 0.05 0.09
Truth-matched 0.29 0.16 0.24
Unmatched 0.42 0.32 0.36

V. ABLATION STUDIES

We demonstrate the effects of removing important
components of CPT to show how they contribute to
the final performance. All comparisons are done on the
tt̄H dataset. Resolutions are reported on all top quarks
passing the preselection, regardless of truth-matching
status.

Attention mechanism: The attention mechanism is an
important part of the model as it allows the model to
selectively focus on a subset of the final state objects in
determining the four-momentum of each top quark. We
demonstrate its benefit by training an otherwise identical
model except with all attention weights set to a constant
1

Nin
, where Nin is the number of final state objects in the

event. Comparisons between the resolution achieved by
this model and the nominal model is shown in Table III.
We observe the model with uniform attention achieves
worse resolutions, which demonstrates the benefit of the
attention mechanism.

TABLE III: Comparison of resolutions of top quark four-
momentum components in the tt̄H sample achieved by
CPT and its variant applying uniform-attention for each
final state object.

�pT �y ��

CPT 0.24 0.21 0.23
CPT (uniform attention) 0.27 0.23 0.28

Covariant attention: CPT employes a covariant atten-
tion mechanism to exploit the symmetries in collision data.
When the covariant attention is replaced by a regular at-
tention mechanism which does not guarantee covariance,
we observe increasing degradation in performance as the
size of the training sample becomes smaller. Figure 5
compares the resolutions achieved by CPT and its variant
using a regular attention mechanism, as a function of the
number of training events. For example, the increase in
pT resolution can be as large as 16% when only 0.1% of
the events in the nominal training sample is used. This
shows that the covariant attention enables CPT to be
more data-efficient and provide more accurate predictions
in the low-data regime compared to non-covariant models.

FIG. 5: Resolution on in tt̄H sample achieved by using
the covariant attention and non-covariant attention. The
covariant attention offers clear benefit particularly in the
low-data regime.

Alternative architectures: Finally, we compare
with two alternative permutation-invariant architectures,
Graph Convolutional Networks [50] and DeepSets [51].
Applied to this task, Graph Convolutional Networks
(GCNs) use graph convolutions to process information in
the final state objects represented as a complete graph,
while DeepSets uses a fully connected neural network
encoder to learn the feature vector of each final state
object individually. In both cases, the feature vectors of
all final state objects are then summed and fed into a fully
connected neural network to predict the top quark four-
momenta. The Covariant Particle Transformer mainly
differs from these two architectures by utilizing an atten-

2203.05687

Covariance architectures 
can reduce parameter 

count, improve robustness, 
enhance performance

[← this example is partial 
Lorentz covariance]


