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® Processes with heavy flavor (HF) playing an increasingly important role in
particle physics measurements

® Measurements involving HF provide important input to:

- Insightful studies of QCD
- Measurements of heavy particles that decay to HF
- Constraints on SM couplings

- Searches for BSM physics

® These studies require the ability to identify and measure HF jets
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® Jet Fragmentation
® HF Jet Tagging
® Examples of Using HF Jets for Physics
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Hadronization and Frag tion Functions

Define distribution of hadrons using a “fragmentation function”:

— Define Dg(x) as probability that a quark ¢ will fragment to form a hadron
that carries fraction © = Ej,/E4 of the initial quark energy
— We cannot predict D,’;(x)

® Measure them in one process and then ask are they universal

— Like PDF's the Dg(x) exhibit scaling violations as a function of ¢2

® Parameterization of D (z) essential for Monte Carlo programs used to
predict the hadron level output

® Also important for modern NLO and NNLO calculations, some of which
incorporate fragmentation into calculated observable

® |n both cases, parameterization of fragmentation depends critically on
theoretical approach
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Heavy Quark Fragmentation: B hadrons

® Heavy flavored mesons retain a large
fraction of momentum of intial quark

® For (N)NLO calculations:

— In limit of very large quark mass,
fragmentation peaked near z = 1:

Dg(w,n*) = §(1 — o)
pi=

"

— Large perturbative corrections can
be resummed over powers of
aglog(mg/pr) and to NNLO
accuracy

— Inclusion of non-perturbative effects
by convoluting perturbative result
with a phenomenological
non-perturbative form.

® For Monte Carlos, introduce
phenomological form for D¢ (z, u?)
and fit to experimental measurements
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Decay mode most commonly used:
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— Small correction to reco-level value
needed to account for unmeasured v
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Fragmentation in Pythia

® |n PYTHIA8 HF fragmentation fn
given by the Lund-Bower function

1

— _ .ya _—bmZ/z
1) = iy (1= )" e

® The r, parameter can be tuned for
each I?IF species to improve
agreement with measured D(’;(a:)
distribution

— Fragmentation fn applied in MC AFTER
gluon radiation

— Fit to same data needs different
parameters for different ag values

— ATLAS uses the Al4 tune of PyTHIA
which has avg = 0.127 while Monash uses
ag = 0.1365

— This has a big effect on input parameter
for fragmentation

SLD  (r,=1.092 +0.030)

OPAL  (r,=1.023 +0.019)

DELPHI (r,=1.094 + 0.090)

ALEPH (r,=1.070 +0.035)
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® Tuning Al4 to LEP data moved r,

from Monash value of 0.855 to a new
value of 1.05

® This changed measured top mass by

a few 100 MeV!
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Heavy Quark Fragmentation: Charm hadrons
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® Measurements published for Dt and
Dt
® Rivet routine CLEO_2004_S5809304

® Mean values of Tp = p/Pmaz:

Dt 0.582 =+ 0.008 + 0.004
D*t 0.611 =+ 0.007 £ 0.004
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® Most precise measurements from
ALEPH arXiv:hep-ex/9909032v2

® Problem: Contributions from B decay
and gluon splitting

® Attempt to isolate c-fragmentation,
but resulting histogram NOT
provided

® Quoted mean value of
TEp = ED/Ebeam:

< xp >=0.4778 £ 0.0046 + 0.0061

Not clear if quoted mean agrees with
the left fig above? 7/20



Is HF Hadronization Universal?

® Has always been assumed that
fragmentation is universal

® But there are reasons this might not

be true:

— Color flow in hadron collisions much
more complicated

— Final state partons can interact with
remnants from initial hadrons

— Possible presence of coherent effects

® Recent results from ALICE show a
higher-than-expected baryon
production rate at low pp

® |nteresting result, not-yet fully
understood theoretically, that
demonstrates need to test
fragmentation models in the same
phase space as the physics
measurements being performed
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|dentifying (aka Tagging) HF Jets

® HF jet defined as a jet containing one or more HF hadrons

— Typically don’t include quarkonia (which has charm and bottom number zero)
— Higher mass HF states decay strongly to lighest states of same flavofr

— Lightest states decay weakly
® Tagging strategy depends on properties of these weakly decaying states

Bottom Hadrons Charm Hadrons
Species Mass cT semileptonic BR Species Mass cT semileptonic BR
GeV um GeV pum
BT 5.279 | 491 11% DT 1.870 | 309 16%
B 5.279 | 455 10.3% D° 1.865 | 123 6.5%
B, 5.366 | 456 9% D 1.968 151 6.3%
Ap 5.619 441 10.9 Ac 2.286 60.4 3.9%

Important characteristics:

— States with mass ~ 1.8 GeV for charm and ~ 5.2 GeV for botto
— Long lifetime

— Large semileptonic BR

These properties define how to tag HF jets
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HF jets at the LHC
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Track Impact Parameters for HF Decay products

® |P defined as distance of closest approach of reconstructed track to
primary vertex
— At LHC, often use transverse impact parameter since beamspot is small is
-y direction and long in z
® |P given by
do = yBcTsin ¢
where 7 is HF proper decay time and v is angle between secondary vertex
and HF-hadron direction of flight
® sing is x 1/87, so < dy > cr, independent of HF-hadron momentum
— One advantange of IP tagging: Does not depend on knowledge of
HF-hadron momentum spectrum
® |P can be signed to be positive if track consistent with coming from
vertex with positive decay distance and negative otherwise
® Can construct likelihood function for track IP for primary tracks
(distribution depends on multiple scattering and uncertainty on primary
vertex position)
— Overall likehood constructed as product of likelihoods of all tracks

® Product likelihood is one option to use for HF-tagging
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Vertex Tagging

® Rather than treating tracks independently, can start with large IP tracks
and ask if they are consistent with coming from a single vertex

® Vertex constrained fit: vary track parameters within uncertainties on fited
parameters to find best vertex position and associated track parameters
for the tracks

® Position of secondary vertex and its uncertainty returned from the fit

® More sophisticated algorithms can ask if more than one vertex is present

— Either from multiple HF in jet (gluon splitting) or from b — ¢ — light

— ML techniques such as graphical neural nets perfect for this application
® Can calculate mass of the secondary vertex.

— Helps to separate B and D
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HF tagging with leptons

® Leptons from W and Z decays tend to be isolated (not near any jets) and
have high pr

® |eptons from HF tend to be inside jets which momentum distribution
that depends on the HF hadron momentum

® Background leptons inside jets come from hadron decays (eg 7t — utv,
and 1° — yeteT)

® FElectrons from photon conversion also a source of background

® | eptons from HF decay will have non-zero IP and transverse momentum
relative to the jet axis

— IP distribution depends on c7

- pTTEl depends on mass of HF hadron

— Can separate signal from background and bottom from charm by fitting
shape of dy and/or p}ez distributions (or defining signal and background
likelihoods)

® Here again, ML techniques can really help with the separation
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Heavy Flavor Tagging Methods at LEP (1)
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Number of muons
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Example of using HF tagging: R} and Measurements at LEP

® Double Tag method (two hemispheres)

fs = &Ry +eRe+ Euds(l — Ry — RC)
Jo = "Ryt e Re+ .1~ Ry~ Re)
o= (1+0)

where fs and f4 are fraction of single and double tagged events and C is
a small correction due to correlation between hemispheres

® Note: Requires simulation for the €'s and independent measurement of R,
® Multitag method

» Employ several tags and independent categories to refine the measurement
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New Developments: ML based tagging

4190 (13 TeV, 2017)
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® Example of latest-and-greatest from CMS
® Similar plots available from ATLAS

® Detailed discussion of algorithms and their calibration would be good topic for a
student presentation
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Z + b—jet production
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Using HF jets to study QCD (Some examples)

W + c-jet production
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Particles that Decay to HF je

Discovery of Top (CDF) Top Mass Measurement
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Conclusions

® HF jets important for many physics measurements
® QCD studies of HF interesting in their own right

® Sophisticated tagging algorithms exist together with techniques to
calibrate the efficiency and purith

® | ots of good topics for students talks in this area
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