Jet with Heavy Flavor

M. Shapiro

Sept 6, 2023

Overview

- Processes with heavy flavor (HF) playing an increasingly important role in particle physics measurements
- Measurements involving HF provide important input to:
 - Insightful studies of QCD
 - Measurements of heavy particles that decay to HF
 - Constraints on SM couplings
 - Searches for BSM physics
- These studies require the ability to identify and measure HF jets

Outline

- Jet Fragmentation
- HF Jet Tagging
- Examples of Using HF Jets for Physics

Hadronization and Fragmentation Functions

- Define distribution of hadrons using a "fragmentation function":
 - Define $D_q^h(x)$ as probability that a quark q will fragment to form a hadron that carries fraction $x = E_h/E_q$ of the initial quark energy
 - We cannot predict $D_q^h(x)$
 - Measure them in one process and then ask are they universal
 - Like PDF's the $D_q^h(x)$ exhibit scaling violations as a function of q^2
- Parameterization of $D^h_q(z)$ essential for Monte Carlo programs used to predict the hadron level output
- Also important for modern NLO and NNLO calculations, some of which incorporate fragmentation into calculated observable
- In both cases, parameterization of fragmentation depends critically on theoretical approach

Heavy Quark Fragmentation: B hadrons

- Heavy flavored mesons retain a large fraction of momentum of intial quark
- For (N)NLO calculations:
 - In limit of very large quark mass, fragmentation peaked near z = 1:

 $D_Q(x,\mu^2) = \delta(1-x)\Big|_{\mu^2 = m_Q^2}$

- Large perturbative corrections can be resummed over powers of $\alpha_S \log(m_Q/p_T)$ and to NNLO accuracy
- Inclusion of non-perturbative effects by convoluting perturbative result with a phenomenological non-perturbative form.
- For Monte Carlos, introduce phenomological form for $D_Q(x, \mu^2)$ and fit to experimental measurements

- For *b*-quarks good data exists from LEP/SLC
- Small differences between experiments can be treated as a systematic uncertainty
- Decay mode most commonly used: $B \rightarrow D^{(*))} \ell \nu$
 - Small correction to reco-level value needed to account for unmeasured ν

Fragmentation in Pythia

• In PYTHIA8 HF fragmentation fn given by the Lund-Bower function

$$f(x) = \frac{1}{x^{1+r_q b m_q^2}} (1-x)^a e^{-bm_T^2/x}$$

- The r_q parameter can be tuned for each HF species to improve agreement with measured D^h_q(x) distribution
- Fragmentation fn applied in MC AFTER gluon radiation
- Fit to same data needs different parameters for different α_S values
- ATLAS uses the A14 tune of $\rm PYTHIA$ which has $\alpha_S=0.127$ while Monash uses $\alpha_S=0.1365$
- This has a big effect on input parameter for fragmentation

- Tuning A14 to LEP data moved r_b from Monash value of 0.855 to a new value of 1.05
- This changed measured top mass by a few 100 MeV!

Heavy Quark Fragmentation: Charm hadrons

- Measurements published for D^+ and D^{*+}
- Rivet routine CLEO_2004_S5809304
- Mean values of $x_p = p/p_{max}$:

 $D^+: 0.582 \pm 0.008 \pm 0.004$ $D^{*+} 0.611 \pm 0.007 \pm 0.004$

- Most precise measurements from ALEPH arXiv:hep-ex/9909032v2
- Problem: Contributions from *B* decay and gluon splitting
- Attempt to isolate c-fragmentation, but resulting histogram NOT provided
- Quoted mean value of $x_E \equiv E_D/E_{beam}$:

 $\langle x_E \rangle = 0.4778 \pm 0.0046 \pm 0.0061$

Not clear if quoted mean agrees with the left fig above? 7/20

Is HF Hadronization Universal?

- Has always been assumed that fragmentation is universal
- But there are reasons this might not be true:
 - Color flow in hadron collisions much more complicated
 - Final state partons can interact with remnants from initial hadrons
 - Possible presence of coherent effects
- Recent results from ALICE show a higher-than-expected baryon production rate at low p_T
- Interesting result, not-yet fully understood theoretically, that demonstrates need to test fragmentation models in the same phase space as the physics measurements being performed

Identifying (aka Tagging) HF Jets

- HF jet defined as a jet containing one or more HF hadrons
 - Typically don't include quarkonia (which has charm and bottom number zero)
 - Higher mass HF states decay strongly to lighest states of same flavofr
 - Lightest states decay weakly
- Tagging strategy depends on properties of these weakly decaying states

Species	Mass	$c\tau$	semileptonic BR
	GeV	μ m	
B^+	5.279	491	11%
B^0	5.279	455	10.3%
B_s	5.366	456	9%
Λ_B	5.619	441	10.9

Species	Mass	$c\tau$	semileptonic BR
	GeV	μ m	
D^+	1.870	309	16%
D^0	1.865	123	6.5%
D_s	1.968	151	6.3%
Λ_C	2.286	60.4	3.9%

Charm Hadrons

Bottom Hadrons

Important characteristics:

- States with mass $\sim 1.8~{\rm GeV}$ for charm and $\sim 5.2~{\rm GeV}$ for botto
- Long lifetime
- Large semileptonic BR

These properties define how to tag HF jets

HF jets at the LHC

Track Impact Parameters for HF Decay products

- IP defined as distance of closest approach of reconstructed track to primary vertex
 - At LHC, often use transverse impact parameter since beamspot is small is x-y direction and long in z
- IP given by

$$d_0 = \gamma \beta c \tau \sin \phi$$

where τ is HF proper decay time and ψ is angle between secondary vertex and HF-hadron direction of flight

- $\sin\phi$ is $\propto 1/\beta\gamma$, so $< d_0 > \propto c\tau$, independent of HF-hadron momentum
 - One advantange of IP tagging: Does not depend on knowledge of HF-hadron momentum spectrum
- IP can be signed to be positive if track consistent with coming from vertex with positive decay distance and negative otherwise
- Can construct likelihood function for track IP for primary tracks (distribution depends on multiple scattering and uncertainty on primary vertex position)

- Overall likehood constructed as product of likelihoods of all tracks

Product likelihood is one option to use for HF-tagging

Vertex Tagging

- Rather than treating tracks independently, can start with large IP tracks and ask if they are consistent with coming from a single vertex
- Vertex constrained fit: vary track parameters within uncertainties on fited parameters to find best vertex position and associated track parameters for the tracks
- · Position of secondary vertex and its uncertainty returned from the fit
- More sophisticated algorithms can ask if more than one vertex is present
 - Either from multiple HF in jet (gluon splitting) or from $b \rightarrow c \rightarrow light$
 - ML techniques such as graphical neural nets perfect for this application
- Can calculate mass of the secondary vertex.
 - Helps to separate \boldsymbol{B} and \boldsymbol{D}

HF tagging with leptons

- Leptons from W and Z decays tend to be isolated (not near any jets) and have high p_{T}
- Leptons from HF tend to be inside jets which momentum distribution that depends on the HF hadron momentum
- Background leptons inside jets come from hadron decays (eg $\pi^+ \to \mu^+ \nu_\mu$ and $\pi^0 \to \gamma e^+ e^-$)
- Electrons from photon conversion also a source of background
- Leptons from HF decay will have non-zero IP and transverse momentum relative to the jet axis
 - IP distribution depends on $c\tau$
 - p_T^{rel} depends on mass of HF hadron
 - Can separate signal from background and bottom from charm by fitting shape of d_0 and/or p_T^{rel} distributions (or defining signal and background likelihoods)
- Here again, ML techniques can really help with the separation

Heavy Flavor Tagging Methods at LEP (I)

14 / 20

Heavy Flavor Tagging Methods at LEP (II)

Fully reconstructed hadrons

• Double Tag method (two hemispheres)

$$f_s = \epsilon_b R_b + \epsilon_c R_c + \epsilon_{uds} (1 - R_b - R_c)$$

$$f_d = \epsilon_b^{(d)} R_b + \epsilon_c^{(d)} R_c + \epsilon_{uds}^{(d)} (1 - R_b - R_c)$$

$$\epsilon_f^{(d)} = (1 + C) \epsilon_f^2$$

where f_s and f_d are fraction of single and double tagged events and C is a small correction due to correlation between hemispheres

- Note: Requires simulation for the ϵ 's and independent measurement of R_c
- Multitag method
 - Employ several tags and independent categories to refine the measurement

New Developments: ML based tagging

- Example of latest-and-greatest from CMS
- Similar plots available from ATLAS
- Detailed discussion of algorithms and their calibration would be good topic for a student presentation

Using HF jets to study QCD (Some examples)

Z + b-jet production

$g \rightarrow b\overline{b}$

W + c-jet production

b-fragmentation from $t\overline{t} \rightarrow W*+bW^-b$

Particles that Decay to HF jets

Discovery of Top (CDF)

Conclusions

- HF jets important for many physics measurements
- QCD studies of HF interesting in their own right
- Sophisticated tagging algorithms exist together with techniques to calibrate the efficiency and purith
- Lots of good topics for students talks in this area