QCD

- We know it's right
- Issue is how reliable are calculations:
 - do you believe central value
 - Do you believe error estimate

Read these lectures by Giulia Zanderighi

https://www2.physics.ox.ac.uk/sites/default/files/QCDLectures.pdf

1

Calculations and approximations in QCD

- perturbation theory
 - How many orders are used?
 - What is the scale?
 - How to estimate next (calculated orders)
- Resummed perturbation theory
 - can yield better estimates for multiple scale problems
- Reliable non-perturbative methods
 - External data inputs needed
 - Effective field theory
 - Lattice
- Unreliable non perturbative models (quoted errors worthless?)
 - Hadronization models
 - Old fashioned models of structure (quark models..)

Perturbation theory

- QCD has one coupling parameter
 - Quark masses come from electro weak theory and are additional inputs
 - Ignore masses for the moment

$$\begin{aligned} \mathcal{L}_{\text{QCD}} &= \bar{\psi}_i \left(i \gamma^\mu (D_\mu)_{ij} - m \,\delta_{ij} \right) \psi_j - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a \\ &= \bar{\psi}_i (i \gamma^\mu \partial_\mu - m) \psi_i - g G^a_\mu \bar{\psi}_i \gamma^\mu T^a_{ij} \psi_j - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a \,, \end{aligned}$$

Using perturbation theory

- Can calculate inclusive quantities in PT
 - Example: total cross section e+e- to hadrons
 - Cannot ask what hadrons are
 - Estimated by e+e1 to quarks and gluons
 - Lowest order qq
 - NLO qqg etc
 - This materializes as hadrons with probability 1

Dimensionless

$$R = rac{\sigma \left(e^+ e^-
ightarrow ext{hadrons}
ight)}{\sigma \left(e^+ e^-
ightarrow \mu^+ \mu^-
ight)}$$

$$R
ightarrow 3 \sum_{m{q}} Q_{m{q}}^2$$

LAWRENCE BERKELEY NATIONAL LABORATORY

Cannot predict anything until you know what this is

LAWRENCE BERKELEY NATIONAL LABORATORY

- Could use this process to define α
- But R depends on energy (if you measure it accurately enough)
 - The formula cannot be correct
 - You might expect α to depend on energy $\alpha(\mu)$
 - How does that arise ?
- Alternative to define coupling is in terms of static force between 2 heavy quarks (like QED: 1/127)

- The loop is divergent (infinite)
- An unphysical scale is introduced (μ) to regulate the divergence: use this coupling
- Now R >>> R(Energy/μ)
 - Now depends on energy
 - $R(E2)=R(E1)+A\alpha(E2)In(E1/E2)$
 - Still have only one constant (now called α(E2))
 - Can parametrize energy dependence of α

This is approximate: see PDG for more detail

- When calculating (dimensionless) process with only one energy scale,
- $\sigma(E)=(1/E^2)f(\mu/E,\alpha(\mu))$
 - But μ is unphysical so can use any value?!?
 - If calculation is reliable result will not depend on μ
 - Calculations are more pricise if one works harder!

Need NLO at least to make any prediction

CCCC

BERKELEY L

Calculations and approximations in QCD

- Leading order (LO) perturbation theory
 - Higher order corrections
- Resummed perturbation theory
- Non perturbative methods
 - External data inputs
 - Effective field theory
 - Lattice
- Non perturbative models
 - Hadronization models
 - Old fashioned models of structure (quark models..)
- Estimates of the uncertainties

QCD effects in muon (g-2)

- (g-2) is reaching precision that this is important
- Cannot calculate in perturbation theory as α is too big
- Need to know this in order to use (g-2) as test of Standard Model

BERKELEY

Lattice

- Calculation technique not dependent on small coupling
- Works by evaluating the path integrals exactly
 - Integrate over gluons at everywhere in space
 - Not possible:
 - Make space discrete: integral-→ sum
 - Finite number of space points (quarks sit here)
 - Finite number of links (gluons sit here)

$$\psi(x) \longrightarrow \psi_n, \qquad x = na$$

 $\int dx_i \longrightarrow a \sum_{n_i}$
 $\int \mathcal{D}\psi \mathcal{D}\bar{\psi} \longrightarrow \prod_n d\psi_n d\bar{\psi}_n$

Lattice

- Can calculate everything in principle
- Limited by CPU power
 - Finite number of lattice sites (long distance cut off)
 - Scale is introduced (lattice spacing)
 - Use some data (eg proton mass) to fix coupling at lattice size
 - Map lattice coupling to α in PT
 - Best determination of α
 - Limitations
 - Can only compute static quantities
 - Errors due to finite lattice
 - Can try to estimate these

Processes needing external input

- ep> eX
- Initial state needs to be described

- Process not calculable in PT
 - But Q² dependence is calculable
 - Need data at one value, predict rest

Evolution of PDF's

These PDF's are universal This is a non trivial result

Production of top quarks at LHC

- Calculate fundamental process
- Put together with PDF
- What is scale?
 - "obviously top mass"

Not obvious

- Suppose interested in high transverse momenta top
 - pt>>M
 - Use pt or M? Or average....
- $\sigma \sim \alpha^2 + \alpha^3 \log(\text{pt/M}) + \alpha^4 \log^2(\text{pt/M})....$
 - Problem if $\alpha \log(pt/M) \sim 1$
 - This is a generic issue when 2 (or more scales are present)
 - Terms must be resummed
- Bottom production
- Jets where mass(jet, jet) big but <<< pt
- Many others

Exclusive quantities jets

- Have not yet asked about details of what is seen
 - Avoided issue of hadrons
- Reconstruction of decay products (top, new particles) needs exclusive quantities
- Again factorization helps
 - Use PT to calculate final state of quarks/gluons
 - Then used model to make hadrons
 - Measure quantities not sensitive to this part
- Jet calculations are usually done by showering MC
 - But analytic calculations of "event shapes" are possible

Jet clustering

Gaol is to define quantities sensitive to energy flow

- Reconstruction of decay products (top, new particles) needs exclusive quantities
- Again factorization helps
 - Use PT to calculate final state of quarks/gluons
 - Then used model to make hadrons
 - Measure quantities not sensitive to this part
- Jet calculations are usually done by showering MC
 - But analytic calculations of "event shapes" are possible

Jet clustering

How many jets are here?

Need a clustering algorithm Must be applicable to data and to quarks/gluons Then theory can be compared to data.

Jet clustering

Now we have a multi-scale problem

- Pt1, pt2, pt3, mass of a pair.....
- Which scale to use?
- What about αlog(pt1/pt2)~1
- Showering Monte Carlos attempt to get everything at one
 - PT for fundamental process
 - Initial state showering for energy dependence of PDF
 - Resum large logs from big ratios (m/pt) (pt1/ps2) etc
 - Models of hadronisation
- But all the choices are mixed up
 - Reliable errors are impossible?
 - Easy to do something stupid

Picture of showering MC

Note this a classical picture of a quantum process

LAWRENCE BERKELEY NATIONAL LABORATORY

Summary of uncertainties

Strong coupling: If process is α^n , there is n% uncertainty in rate

Choice of μ: Usual to vary factor of 2 from "standard value" May not know "standard value", this prescription is arbitrary

Multi scale processes: very ambigous

Open issues

- We know that QCD is correct
- We cannot always calculate precisely
 - Structure functions
 - Fragmentation parameters
 - Hadron masses
 - Dense environments (stars and plasma)
 - Decay properties
- There are some oddities
 - Why is nucleon spin not carried by quarks?