From table-top laser plasma accelerator to future free electron laser

Jeroen van Tilborg BELLA Center, LBNL

Outline

- LPAs
- Plasma targets
- BELLA 4.2 GeV
- FEL application
 - Active plasma e-beam lens
 - Staged LPA acceleration
 - Realization of new FEL line

BELLA Center (*bella.lbl.gov*) ATAP Accelerator Technology & Applied Physics

S. Barber, F. Isono, A. J. Gonsalves, K. Nakamura, J. Daniels, H.-S. Mao, C. Benedetti, D. E. Mittelberger, E. Esarey, C. B. Schroeder, Cs. Tóth, C. G. R. Geddes, H.-E. Tsai, K. Swanson, S. Steinke, R. Lehe, H. Vincenti, B. Djordjevic, P. Lee, J. van Tilborg, S. S. Bulanov, J. L. Vay, C. Pieronek, and W. P. Leemans

Undulator, Staging

Office of Science

Laser Plasma Accelerator: laser pulses on a gas target

TREX laser system 10 Hz 3.7 J (2 J on target) 35 fs, 60 TW Parabola F=2m (F# 40) w_0 =19 µm I=1x10¹⁹ W/cm²

Gas Targets Gas jet, gas cell, discharged guiding channel 1mm to 10cm in length density ~10¹⁶-10¹⁸ cm⁻³

Office of Science

Laser plasma accelerators (LPAs) are compact and produce femtosecond relativistic e-beams

- Laser foot ionizes gas
- Ponderomotive force keeps pushing electrons away \rightarrow charge separation
- Ions pull back electrons (time scale $t_p = \lambda_p / c \sim 10-100$ fs)
- Ultra-high axial electric fields co-propagate with laser at c
- Electrons externally injected, or trapped from background plasma

Esarey et al., RMP 81, 1229 (2009)

B.A. Shadwick et al., IEEE PS. 2002

Laser plasma accelerators (LPAs): Wealth of physics and complexities

- Setting up the plasma
 - Foot laser pulse 0
 - Pre-ionization with 2nd laser (guiding channel) 0
 - Pre-ionization with electric discharge pulse 0
- Laser drives strong co-propagating plasma wave (with an accelerating region)
 - Transverse laser evolution (diffraction $z_p = \pi w^2 / \lambda$, self-focusing, guiding channel) 0
 - Longitudinal laser evolution (pulse steepening, self-modulation) Ο
- **Electron injection**
 - **External injection** 0
 - Transverse wavebreaking \cap
 - Ionization-induced at peak of laser pulse 0
 - **Down-ramp induced** \cap
 - **Colliding pulse** Ο
- Acceleration of injected electrons (10-100 GeV/m)

Intense Laser Pulse

Office of Science

Why the global interest?

Conventional structure: ~ 30 MV/m

LPA: ~ 30,000 MV/m

PROS

- Compact (plasma ~cm, laser ~single room, cave ~ single room) vs. 100-1000m. Think \$\$\$\$\$
- High charge (10-100 pC), short (few fs) e-beams
- Emittance is excellent
- Laser-synchronized
- Modular system (easy to re-configure)

CHALLENGES

- Shot-to-shot fluctuations
- Rep rates 1-10 Hz (kHz studies ongoing)
- Multi-% energy spread. Matters for some applications (solutions!)
- >1 mrad divergence. Matters for some applications (solutions!)

Recent milestone results from global LPA community

C. G. R. Geddes, et al, Nature, **431**, p538 (2004); S. Mangles et al., Nature **431**, p535 (2004); J. Faure et al., Nature **431**, p541 (2004); Leemans et al., Nature Phys. **2**, 696–699 (2006); Banerjee et al., Phys. Plasmas **19**, 056703 (2012); X. Wang et al., Nature (2012).

OF Office of Science

Capillary discharge plasma target mitigates diffraction to increase interaction length & energy gain

F │ Office of Y │ Science

Plasma density inferred from laser group velocity

Experiment: J. van Tilborg et al. Phys. Rev. E 89 (2014), J. Daniels et al. Phys. Plasmas 22 (2015), Gonsalves et al., Phys Plasmas 17 (2010)

RGY | Office of

Experiments at LBNL use the BELLA laser focused by a 14 m focal length off-axis paraboloid onto gas jet or capillary discharge targets

Mode properties in near field are important in understanding the propagation through the capillary structure

Simulation shows top hat beam gives increased fluence at capillary wall compared to Gaussian , higher density compensates

4.25 GeV beams have been obtained from 9 cm plasma channel powered by 310 TW laser pulses (15 J)

- Laser (E=15 J):
 - Measured) longitudinal profile (T₀ = 40 fs)
 - Measured far field mode (w_0 =53 µm)
- Plasma: parabolic plasma channel (length 9 cm, n₀~6x10¹⁷ cm⁻³)

Gonsalves et al., Phys. Plasmas **22**, 056703 (2015); Leemans et al., PRL **113**, 245002 (2014).

Divergence

Energy

 $\Delta E/E$

Charge

Sim.

3.2%

23 pC

0.6 mrad

4.5 GeV

Exp.

5%

4.25 GeV

~20 pC

0.3 mrad

LPA drives compact undulator light source

For example, $K_0 = 1.5$, $\lambda_u = 2$ cm, and $\gamma = 1000$ ($\simeq 500$ MeV), yields $\lambda_r = 21$ nm (60 eV)

$$\lambda_r = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K_0^2}{2} + \gamma^2 \theta^2 \right)$$

parameters

- λ_u =magnet spacing (undulator period ~1-2 cm)
- γ =Lorentz factor electrons (300 MeV \rightarrow γ ~600)
- K_0 =magnet strength parameter ($K_0 \sim 1$)
- θ =angle of observation (θ <<1)

Number of photons

- ~ number electrons
- ~ number periods

```
fs source of X-rays (10<sup>7</sup> photons/shot)
```


High quality e-beam \rightarrow coherent Free Electron Lasing

Critical to FEL

- Charge
- Energy spread Δγ (<<1%)
- Emittance ϵ_n (<<1 µm-mrad)
- Transport: rapid e-beam capture

TREX laser system: LPA development (stable damage-free LPA & high charge density LPA)

Science

17

LPA electron beam subject to stringent requirements

Key requirements

- Sub-% $\Delta E/E$ required for lasing slice
- Disperse/stretch electron beam
- Charge 2-3 pC/MeV

Emittance measurements highlight sub-micron source size

Office of

Science

Emittance = Size x Divergence (sub-µm x few mrad)

- Betatron X-ray spectrum ~ size
- Source size ~ 0.1 0.5 micron

Measure e-beam size at image plane

• Source size ~ 0.5 – 1 micron

Weingartner et al. PRSTAB (2012)

Soft X-rays generated [LPA undulator radiation, tape-based HHG (seed)]

Incoherent X-rays (no designed e-beam transport) from ~400 MeV e-beams

Shaw et al. AAC Proceedings 2012

Strong-field miniature quadrupoles have been implemented for LPA beam transport

Fuchs et al. Nat. Phys. (2009)

Quadrupole technology not capable of rapid capture \rightarrow emittance increase from energy spread

Degradation: coupling energy spread & divergence

Office of

Science

Defense Nuclear

Nonproliferation R&D

Capillary-discharge active plasma lens successfully demonstrated on LPA line

Active Plasma Lens

- Introduced 1950s (ion beams)
- Symmetric focusing
- Tunable
- Gradients >3000 T/m
- Rely on negligible wakefields

Science

Nonproliferation R&D

Strong focusing field gradients observed! Multiple in-lens oscillations increase chromatic dependence

BERKELEY LAB

Defense Nuclear Nonproliferation R&D

National Nuclear Security Administration

Active plasma lens: capture within few cm \rightarrow limited emittance degradation

For 300 MeV e-beam Solenoid (2 T, L=20 cm): F=500 cm Quad triplet (500 T/m, L=3 cm): F=20 cm Active plasma lens (2000 T/m, L=3 cm): F=1.7 cm

Science

Defense Nuclear Nonproliferation R&D

Staged acceleration setup: the coupling of two independently-driven LPA stages

Staged acceleration setup: the coupling of two independently-driven LPA stages

Office of Science

Coupling of "fresh" laser: spooling tape Coupling of e-beam: active plasma lens

Successful demonstration of staged acceleration. Two independent LPAs coupled with plasma lens & tape

Laser plasma accelerators (LPAs): Wealth of physics and complexities

Setting up the plasma

- foot laser pulse
- laser pre-ionization (guiding channel)
- electrics discharge pre-ionization
- Laser drives strong co-propagating accelerat
 - Transverse laser evolution (diffraction z
 - Longitudinal laser evolution (pulse stee

Electron injection

External injection \bigcirc

- Femtosecond timing
- Ionization-induced

- many stages Acceleration of injected electrons (10-100 GeV/m)

Intense Laser Pulse

µm positioning

Future: coupling of

Office of Science

BELLA Center secured funding from the Moore Foundation to build compact LPA-FEL

- New 100TW laser
- One laser room \rightarrow stable
- Use existing LPA & undulator cave
- Construction started Jan. 2016

Generation Accelerators

JANUARY 25, 2016

100 TW labs make-over!

Moore 100TW: Undulator (FEL)

Office of Science

LPA transport optimized VISA and Kurchatov undulator have embedded strong-focusing

GENESIS simulations predict strong gain for LPA beams

Summary

- Jet & channel-guiding capillary targets produce MeV-GeV e-beams
- Moore Foundation funding for dedicated single-table 100TW laser system
- Chicane mitigates energy spread
- Active plasma lens as strong e-beam optic
- Compact plasma lens critical to staging of two LPAs
- Several undulators available (Thunder, VISA, Kurchatov)
- Strong simulated photon flux (>1e7-1e8 photons/pulse at 10-50 MeV)
- Kurchatov-2m \rightarrow onset of FEL lasing, VISA-4m \rightarrow strong FEL output

