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Intro to radiation damage

Two types of radiation damage relevant to pixel sensors:
 Bulk damage

*  Non-ionising energy dose (NIEL) effects

* In units of IMeV neutron equivalent does (n/cm?)

* E.g.causes crystal defects (displaced atom and vacancy) = Most important for pixel sensor
* Surface damage:

* Total ionising dose (TID) effects

* In units of X-ray equivalent Rad

*  Affects electronics in CMOS through charge build-up = Most important for readout chip
In ITk:
* 10'¢ n/cm?fluence and | Grad dose for the inner layers

* Possibility to replace innermost two pixel layers, due to expected radiation damage
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Intro to radiation damage

Transistor properties:
* Technology used (130 nm, 65nm, 25nm CMOS etc) = minimum possible feature size
* Production process and foundry used
* Transistor geometry and size (W and L of transistor, or W/L, also referred to as transistor strength)

* Exact transistor layout > modifications possible to increase radiation tolerance (e.g. enclosed transistor layout)

Operational parameters:

* Temperature and Supplied voltage

Irradiation properties:

* Type and energy of incoming particles (mainly for calculating TID)

e Dose rate

Annealing:

» After irradiation, created defects do not stay the same, but can recombine, or create more damage, depending on
operational parameters

—> generally, annealing at high temperatures and unpowered, can reverse TID damage
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ITkPixV2 irradiation studies

* Understanding the radiation tolerance of the pixel
readout chip is very important

—> Expect a total dose of | Grad over the lifetime of 1Tk

* Design validated in simulation up to 500 Mrad, taking
into account different transistor settings (e.g. voltages
and radiation effects)

* But radiation damage is complicated and we need to test
in detail on the chip

* We characterised the radiation tolerance of ITkPixVI in
a lot of detail (PRR talk)

* Received back ITkPixV2 chips a few months ago, and
need to repeat the main measurements we performed

on ITkPixVI

Maria Mironova 20/09/21


https://indico.cern.ch/event/1161673/contributions/4900974/attachments/2456524/4210532/20220613_Irradiations_PRR.pdf

ITkPixV2 ring oscillators

* ITkPixV2 chip includes ring oscillator for radiation
testing of digital logic (located at chip bottom)

‘ Global pulse

* 42 ring oscillators made with different logic cells and ’ :
different transistor sizes (strength 0, | and 4) J J ‘ | ‘ ‘ ‘ Output ring

oscillator
* Oscillator drives a |12-bit counter, enabled for a given —
period of time Tp
—> Calculate frequency f or delay Tp=1/(N 1) T Lees "
* During irradiation ring oscillator frequency decreases A CLK, Inv, NAND, NOR 3x8
: - : : : Bleft  Driving strength 0 and 4
- Characterise radiation damage to different kind of logic B e vl it o
cells right  w/ different lengths
B FF Scan/standard/neg-edge 6
-> Proxy to understand gate delay D-flip-flop
* Speed of digital logic gates needs to be sufficient for 1Tk BLVT  LVTinverter & 4-input NAND 4
readout rates > gate delay should not increase more Strengths 0 and 4
than 200% during Tk operation B CAPA Injection-capacitor loaded 8
4-input NAND

Maria Mironova 20/09/21 5




Oxford X-ray irradiation campaign

* Performing two X-ray irradiation campaigns over the last couple of months
* Set up irradiation campaign in Oxford, at a dose rate of 5.4 Mrad/h
* Get a quick first look at the radiation tolerance of ITkPixV2

* Focus on analog front-end, because we can go to high doses quickly

* Run a range of untuned threshold scans
before and after irradiation

e at 1000e and 2000e

* varying chip parameters (Preamp, Vff,
LCC,VDDA, TDAC etc)

—> assess the operational range of the
analog front
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—> Check how quickly a threshold

distribution deteriorates during irradiation X-ray irradiation setup and beam spot @ Oxford
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Ring oscillator vs VDDD

* Before irradiation, characterise ring oscillator frequency as a function of VDDD

—> See the expected linear behaviour withVDDD, and can use the slopes to correct ring oscillator frequencies to
account for drifts in VDDD with irradiation

* Repeat the curves after irradiation, as the slopes change with irradiation and interpolate between the two points for
the correction
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Irradiation results

—> Chip was powered and cooled
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Comparison with ITkPixVI

X 120
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* Compare to ITkPixV | results (obtained using the same X-ray machine)
* Compare relative increase in gate delay at | Grad for all gates

* Good agreement in general, strength 0 delay seems to increase less than for ITkPixVI = Did we change anything
about the metallisation layers covering the ring oscillators in V2?
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Voltages

Absolute change
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Measures some of the chip voltages with
irradiation

Saw in irradiations of ITkPixV| that
VDDA/VDDD voltage increases

VDDA increased significantly more than
VDDD (+14% for VDDA, +9% for VDDD

after | Grad)

likely caused by increased mismatch of
current mirrors caused by non-uniform
chip metallisation layers

Included two related modificiations in
ITkPixV2 design:

* More uniform metallisation layers =
seem to have the desired effect

* Larger trim bit size = Larger range of
VDDA/VDDD possible

9/22/23




Analog front-end during irradiation

* Performed detuning measurements during irradiation = tune threshold distribution every 10 Mrad and measure
threshold distribution with irradiation

* At the beginning of the irradiation threshold disperses very quickly = most damage to the analog front-end
happens in the first few Mrad of dose

* After 10 Mrad of irradiation, threshold dispersion is much less severe
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Comparison with ITkPixVI

* Consider threshold pixel-to-pixel difference for each threshold scan i.e:Threshold [measurement] —Threshold [after tuning]

* Threshold dispersion defined as standard deviation of distribution of differences

* Observations match quite well between | TkPixV1 and ITkPixV?2

* Initial jump in threshold distribution is slightly different between V1 and V2, but | think this is due to testing procedure

—> For ITkPixV 1.0 threshold tuning and scans took a lot longer, so the initial threshold distribution was probably already
affected by radiation (and in general, we care more about the slope anyways)
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Analog front-end before and after

 Ran batch of untuned threshold scans before and after irradiation

* Generally, untuned threshold distribution gets wider with irradiation, and difference between 600 Mrad and | Grad is small

* For the same global threshold value, need to go to higher Vthl values after irradiation

—> Automatic tuning of global thresholds didn’t always coverge, need to follow up on that

- Also need to check tuned threshold distributions after irradiation

Outer layer
setting
Preamp 400
Vff 60
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LBL X-ray setup

Also set up X-ray irradiation at LBL = dose rate of 0.5 Mrad/h and non-
uniform beamspot

Irradiation focused on end of chip (i.e. chip voltages and ring oscillators)
Monitor everything available via the VMUX, and measure ring oscillators

Set up proper monitoring in Grafana for X-ray machine and chip

v Ring oscillators

Ring oscillator frequencies (Bank A, strength 4)
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Irradiation results
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Delay increase & low dose rate effects

* Can compare the relative gate delay increase for the irradiation in Oxford and at LBL

* See more damage at LBL, caused by the factor 10 lower dose rate at LBL

* Generally, we expect (and have observed) more damage at low dose rate

High dose rate
(5 Mrad/h)
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Low dose rate effects

* Made some detailed investigations into dose rate effects for ITkPixV| using X-ray irradiations at different dose rates

* Can plot delay increase as a function of dose = see around a factor 2 more damage at low dose rate
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Low dose rate effects

* Add ITkPixV2 data to this plot = Matches up really well!
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Summary

* First look at irradiation results for ITkPixV?2

» X-ray irradiation campaign in Oxford focused on analog front-end = results up to | Grad look reasonable and
match with ITkPixV |

—> Next: Finish up analog front-end measurements at | Grad, and then either swap out the chip to get more
statistics, or continue to irradiate until failure

e X-ray irradiation in LBL focused on end-of-chip (VMUX/IMUX voltages and ring oscillators)

—> Next: Irradiate up to | Grad (basically until Christmas), analyse VMUX data (voltages, currents, maybe
temperature/radiation sensors?)

* Will also set up long-term low dose rate irradiation with ITkPixV2 (SLIPPER v2)
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Transistors

* MOSFET transistors are the building of current (pixel detector) electronics
* Working principle:
|. Voltage is applied to gate to induce a channel of free charge carriers below the Si-SiO, surface

2. Voltage applied between source and drain allow charge carriers to move = current

NMOS transistors: | Vs PMOS transistors: V

I| Vip II GS
II Gate II Gate

—1 Metal . Metal

— Source ; Drain Source J Drain
" | |
n nt + +
e-/ ° VGS >0 P h+/ p ¢ VGS <0
* Electrons in the * Holes in the
conduction channel conduction channel
p-type substrate n-type substrate

Maria Mironova 20/09/21 22




Transistor turn-on curve

Transistors part |l

v

vth

* Important characteristics of transistors include: CMOS Inverter
* Transistor leakage current (lieo) = current when no voltage Vs is applied vdd
* Threshold voltage (V) = voltage at which the transistor turns on I_“
*{ P PMOS
* Various logic gates can be constructed from combinations of PMOS and vin L Vout
NMOS gates O—s +—O
* E.g.Inverter gate = if you input 0, you get | and vice versa —
€ NMOS
L
Vgs
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Damage to SiO,

* In readout electronics, the damage to the SiO, and at the Si-SiO,
interface are more important

* Mainly caused by ionization creating charged defect state in the
oxide or at the interface > high electric fields exist in oxides,
which separate the charge carriers

Two different effects to consider:

* Oxide charges (SiO,) = defects in SiO, are always donor-like
(positive), occurs relatively quickly

* Interface states (Si-SiO, surface)
—> Impurity hydrogen ions released from lattice
—> Give rise to new interface states which serve as traps
—> Slower process due to lower mobility of hydrogen ions
—> Can be both acceptor and donor like, depending on material

—> Interface traps are negatively charged in NMOS (under positive
bias) and positively charged in PMOS (under negative bias)
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Transistors

Source
L
' Gate
Drain
-— W >
Gate Gate
Source ‘ Drain ‘
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Edge effects - NMOS

Ips

* Depending on transistor type, TID damage
effects can look different

* Consider effects of radiation damage in STI STI STI fa‘efa' parasiic ansistor
e In NMOS transistors:

Main transistor

|.  Fast build-up of positive oxide charges Ves

—> opens up another channel through which
electrons can flow between source and drain

Main transistor

fateral parasitic transistor

Ves

+
—> Leakage current increases H

—> Threshold voltage decreases

2. Slower build-up of negative interface charges

—> Counteracts the effect of positive oxide ‘ I
Main transistor

charges
9 Leakage current decreases +++E| E:-]- Lateral parasitic transistor
, 1
—> Threshold voltage increases t+ +

Ves
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Edge effects - PMOS

Main transistor

 In PMOS transistors:

Lateral parasitic transistor

|. Fast build-up of positive oxide charges

3

- Holes in the conduction channel, so no
additional channel opens up

S
S

Ips

—> Leakage current does not increase

Main transistor

—> Threshold voltage decreases +

Lateral parasitic transistor

2. Slower build-up of positive interface charges

+ +
+ +
+ + +
+ +
‘\

—> Same effect as oxide charges

Ves

Ips
R . . + Main transistor
—> Mechanism known as Radiation Induced Narrow
Channel EffeCt (RINCE) ++ =+ +++ Lateratparasitic transistor
-+ ++ 7
+ .+ +,

Ves

—> Threshold voltage increases further
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Application: TID bump in IBL

arXiv:1611.00803

* The discussed effects have been observed in detector operation, e.g. in IBL
* IBL is the innermost layer (at r=33.5 mm) of the current ATLAS pixel detector, inserted during LS|
* Readout chip designed at 130 nm CMOS technology - FE-14

* During operation, LV current of FE-14 chips increased significantly = Caused by increase in NMOS transistor
leakage current

* Leads to various problems: increase in temperature, problems with module tuning
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https://cds.cern.ch/record/2230715/files/arXiv:1611.00803.pdf

Application: TID bump in IBL

* Effect was studied in irradiation X-ray irradiation campaigns

* Findings: At a given dose rate, the current always approaches the same boundary

* The current increase is larger at higher dose rates and lower temperatures

—> As a consequence, IBL was operated at higher temperatures in 2016 (w/ reduced voltage, later increased

again)

* Note: similar behaviour also observed in strips ASIC = reason for pre-irradiation of ITk strips readout chips
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Low vs high dose rate

Fig. 1.

Maria Mironova
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Simplified representation of space-charge effects taking place

during HDRs irradiation in thick oxides crossed by low electric fields (after
Witczak et al. [6]).

Si nitride

STI

Parasitic
channel

|
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AN AR N
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Fig. 2. Schematic illustration of charge trapping in STI field oxides (left) and

spacer oxide

v

LLD spacers (right) (after Faccio and Cervelli [12] and Faccio et al. [13]).
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https://ieeexplore.ieee.org/document/8340851

Application: ITkPiXV I Source Gate Drain
* Note: ITkPixVI chip is produced in 65 nm technology, so the -

conclusions discussed for FE-I4 do not hold anymore Spacer “'t”de Spacer oxide

* Can see some similar features, e.g. ring oscillator gate delay

-type substrate
gets smaller briefly before it gets larger pre

—> Transistor threshold voltage first decreases , and then orerate s
i n C reases * Dose adjusted for copper layers and LDR

* Additional mechanisms (radiation-induced short short channel
effects - RINCE) are at work in 65 nm, e.g. due to TID damage
in spacer regions

Relative gate delay [%]

* Observations from irradiation campaigns:

* TID damage is worse at high temperatures and at low
dose rates

20 krad/h
40 krad/h
60 krad/h
80 krad/h
4 Mrad/h

0.0 25 5.0 7.5 10.0 125 15.0 17.5 20.0

More details in: F. Faccio et al. 1, 2 Dose [Mrad ]

Maria Mironova 20/09/21 31



https://ieeexplore.ieee.org/document/7348757
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8340851

Application: ITkPixV1 ring oscillators

* Dose rate effects not completely understood

* Studied for ITkPixV1 in X-ray irradiations and long-term Kr-85 irradiations

* Can derive try to conversion factors between low and high dose rates, but they depend on

transistor type, size etc.

* Additionally, non-linear effect are observed at very high total doses = not fully understood
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Dose rate: 4 Mrad/h

* Dose adjusted for copper layers and LDR
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