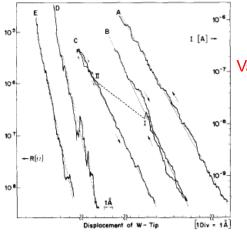
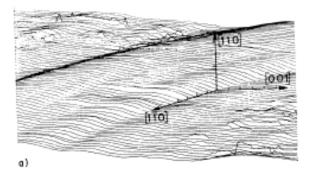

History and Future of Computerized Data Acquisition: Application to Scanning Microscopy D. Frank Ogletree, Ed S. Barnard Imaging Facility

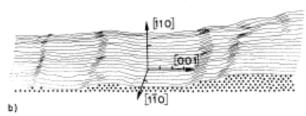
Molecular Foundry, Materials Sciences Division Lawrence Berkeley National Lab

A Short History of Computerized Experiments

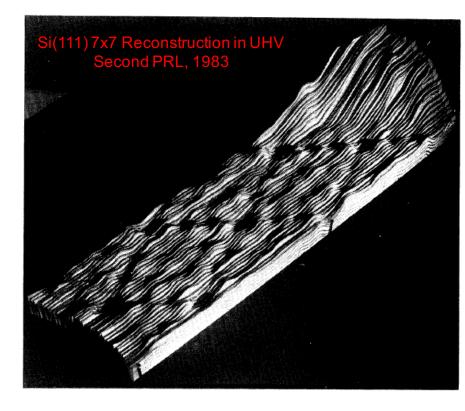

- relatively "recent"
 - only 30 years...
 - STM developed at IBM research was ...analog...in early 80's
- mid-80's
 - Artisanal or proprietary, limited hardware, almost no software tools, graphics/visualization, STM/AFM first computerized
- mid-90's
 - crude SEM software, first TEM software without detector integration, CCD detectors for TEM and Spectroscopy...
- mid-2000's
 - internet, much better computers, operating systems, software environments, computer "literacy"
- mid-2010s,
 - high performance computing, fast networks, cheap storage, big data, theory/simulation much faster and more capable...

LBL Interdisciplinary Instrumentation Colloquium Jan 2016

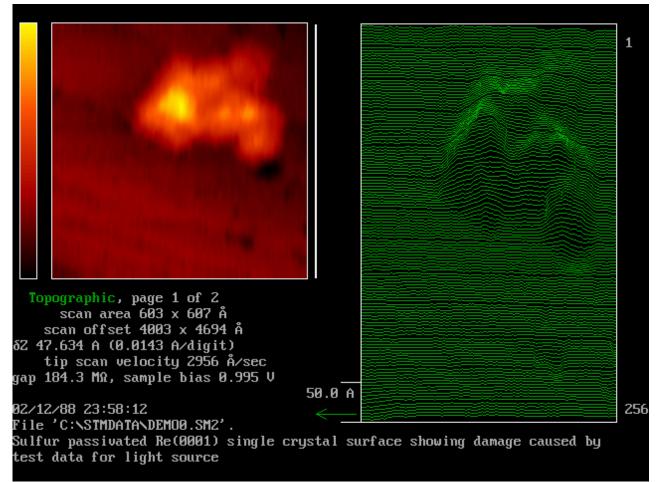



Invention of the STM, 1981

Gerd Binnig & Heine Rohrer, IBM Rüshlikon



 Vacuum tunneling between W tip and Pt foil, First APL, Binnig & Rohrer Jan 1982
 (results from March 81)

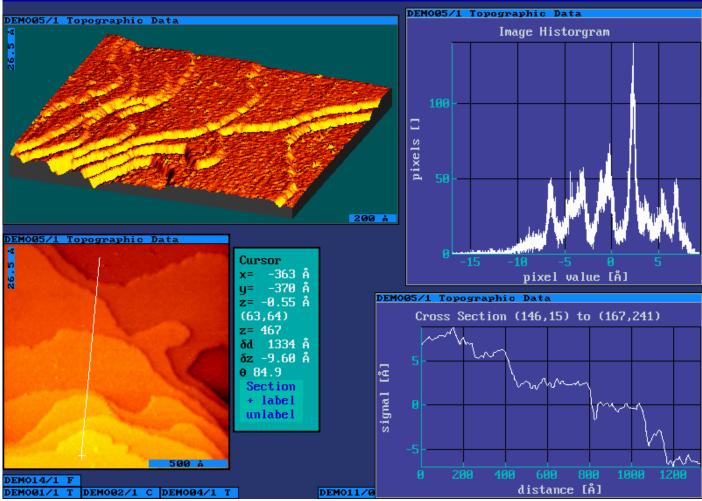

Atomic Steps on Au(110) in UHV First PRL, July 1982

LBL Interdisciplinary Instrumentation Colloquium Jan 2016

STM Software

Screen capture of first STM program developed at LBL in 1987

Fortran on DEC LSI-11 minicomputer, 5 MB disk, 64 kB RAM, \$6,000 display system, 640×480 pixels


LBL Interdisciplinary Instrumentation Colloquium Jan 2016

STM Software

STiMage 3.13d Feb 28

STM program in 1993, C and Assembler on Compaq 80386 (\$19 k), 0.02 GHZ 1 MB RAM 32 bit CPU, SVGA display, extended DOS

LBL Interdisciplinary Instrumentation Colloquium Jan 2016

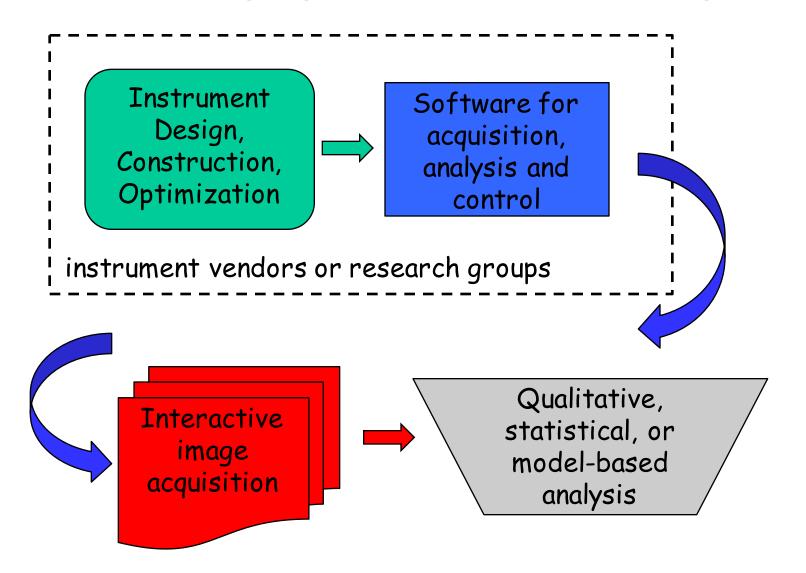
Scanning Microscopy

- Scanning Probe STM/AFM
 - I-V, F-z, electrochemical, dissipation, acoustics, friction, piezoresponsive...
- Confocal/Near Field Optical
 - hyperspectral Raman, PL, PLE, lifetime, pump-probe, transient absorption, polarization, epifluoresence.....
- Analytic SEM
 - Cathodoluminesence, Quantitative current imaging/EBIC, Reflection EELS, Auger Spectroscopy, XRF/EDS/WDS, EBDC...
- Analytic STEM
 - EELS, XRF, CBED, BF/DF, SE, HAADF...
- X-ray synchrotron methods
 - STXM, SFXM...

Nanomaterials Characterization

Data to Damage Ratio!

- SEM
 - heating, radiation damage, contamination, charging (image and electronic properties)...
- STEM
 - SEM modes plus lattice damage/atom displacement, ice radiolysis...
- STM/AFM
 - tip change/wear, sample wear/contamination, tip-induced dynamic processes, vibrational excitations causing chemistry, diffusion...
- Optical
 - thermal damage, melting/ablation, flurophore bleaching...



- experiments not just images
- fast images slow spectra
 - scan region once per spectral point
 - feature tracking during acquisition
 - depends on relative speed of instruments
- "adaptive" acquisition
 - automatic object finding, detail where its needed
 - low SNR image to find regions for hyperspectral mapping
 - SNR threshold not fixed time for spectra
- spiral scanning Paul Ashby
 - edge detection/following

Imaging Instrument Paradigm

vendor instrument software

often the "weak link",

- less capable than hardware
- lags behind in software engineering, exponential growth in computing power

SEM modify data before digitization/storage

- no quantitative data, "contrast and brightness", "channel mixing", limited data channels
- poor or no drift correction, no concept of spectroscopy, low dose imaging, copy "analog" video burn edge/corners
- very minimal data visualization, pay extra for contrast...
- SPM
 - generally more powerful software but proprietary formats, can be unstable/crashes
 - limited scripting/programming (zB Asylum Igor, Nanonis Lab View)
- Optical microscopy
 - software mostly for bio imaging applications, sophisticated turn-key instruments, or build it yourself

researcher developed solutions

- artisanal, strong integration scientce/function
- re-inventing the wheel, undocumented or oral tradition, user hostile...

vendor software

- instruments with large customer/application base and competitive markets can have decent software for typical applications
- Often full power of hardware is "locked out", unintended consequence or captive markets...
- scientific "niche" markets stuck with long software redesign cycles, "locked in" to bad/proprietary choices...
- Commercial software environments
 - NI/Labview, Matlab...
- what is to be done?

One Hardware/Software Challenge Cathodoluminescence

• SEM

- beam current/energy/focus
 - » SmartSEM GUI (computer #1), serial interface
 - » TTL beam blanker
- scanning/image acquisition
 - » external analog scan control inputs
- electron detectors
 - » analog and/or pulse count
 - » "classical" SEM single data stream

extra acquisition/control

- » RHK SPMpro scanning, counter, multichannel data (computer #2)
- » Labview CCD, spectrometer, heater, (computer #2)
- » SRS electronics modules
- » Andor, Acton, Attocube, Camera, etc vendor software

- Optical Componentscollection mirror attocube
 - nano-translators
 - » TTL inputs (old)
 - » closed loop USB-DLL
 - Acton grating spectrometer
 - » USB text commands
 - Andor spectroscopic CCD
 » USB-DLL
 - Acton OMA V IR diode array
 » USB-DLL
 - optical point detectors
 - » PMTs, APDs, pulse train
 - » IR photodiodes, analog
 - CMOS imaging camera
- Sample
 - thermocouples, heaters, cryostat, Lakeshore controller
 - » GPIB, voltage programmed

Frank Ogletree and Ed Barnard

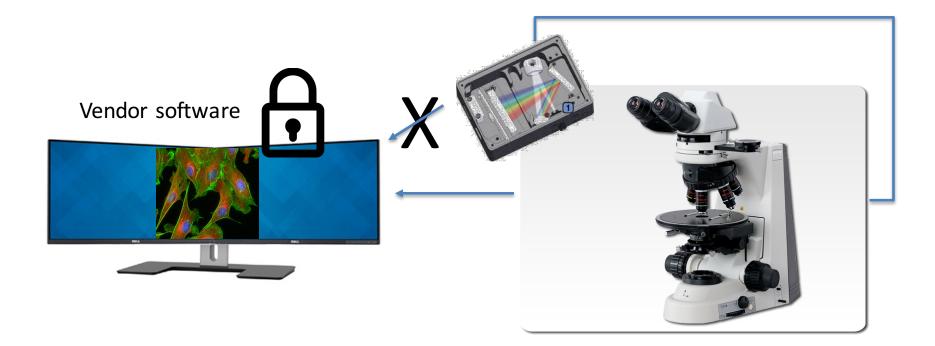
LBL Interdisciplinary Instrumentation Colloquium Jan 2016

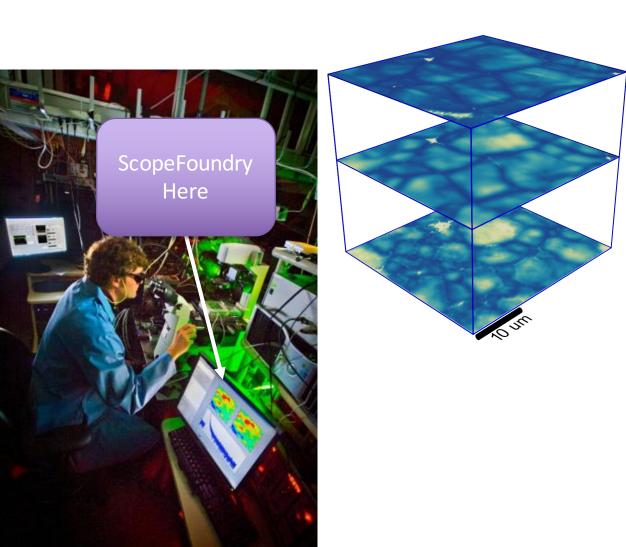
"ScopeFoundry" for Experiments

- Emerging platform for Experiments
 - Developed by Ed Barnard (last talk) for confocal spectromicroscopy experiments
 - Extended to fast experiments/acquisition on SEM/CL/Auger , NCEM
 - Separate processes for instrument control, user GUI, data handling
- Include real instrument response functions?
- Couple to HPC/Bigger data?
 - ORNL Beams??
- Include (real time) simulations of probe-sample interactions ??
 - Physics mostly known, tools for calculation of different aspects mostly exist, rarely used (activation barrier, learning curve...)

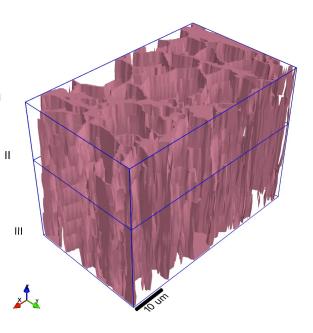
"ScopeFoundry" EcoSystem

Scientific Python

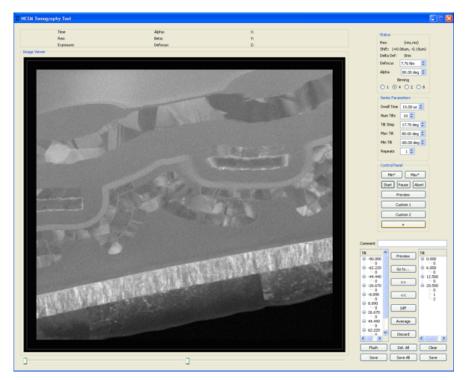

- Anaconda for Mac, Windows, Ubuntu, almost pain-free setup
- Rapidly expanding open source toolset, connect to good numeric libraries, Device independent graphics Qt-Pyside
- Debug on the fly during experiments (Eclipse editor)
- Instrument control
 - Support most common and obscure instrument interfaces
 - call DLL drivers, Serial (GBIP, USB, RS-232, etc)
- Hardware
 - National Instruments (DAQmx-Python)
 - NI PXI-hosted FPGA fast decision making (C DLL-Python)
 - Fast data transfer PXIe
- Data
 - HDF5 (Python library) images/metadata/experiments


Open Source Success?

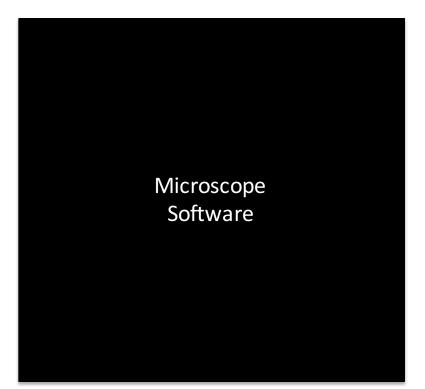
- How can viable software communities be created ?
 - many good intentions, efforts and extinct projects, standards, environments..
- Example of ImageJ
 - open source, multi-platform, extensible
 - many 100s of contributors, many 1000s of users
 - core of dedicated developers/coordinators, supported to some extent by NIH...
 - "Quantum Espresso", "NanoHub", other academic projects....
- Examples of Anaconda, WSxM
 - supported by commercial entities (Continium, Nanotec Electronica) and offered to research communities (for now)
- Role for NSRCs, National Labs, BES...?
 - support projects? joint efforts?
 - push vendors for low-level API's


Custom Microscope Software – Why You Need It

Molecular Foundry Imaging Facility: 3D mapping of lifetime in solar cells


- Custom confocal Microscope
- 12 different vendor hardware pieces
- 4D (3D + t) data sets

ScopeFoundry at NCEM


Colin Ophus Peter Ercius

TEAM Microscopes

- Smart drift correction during tomography
- New imaging modalities

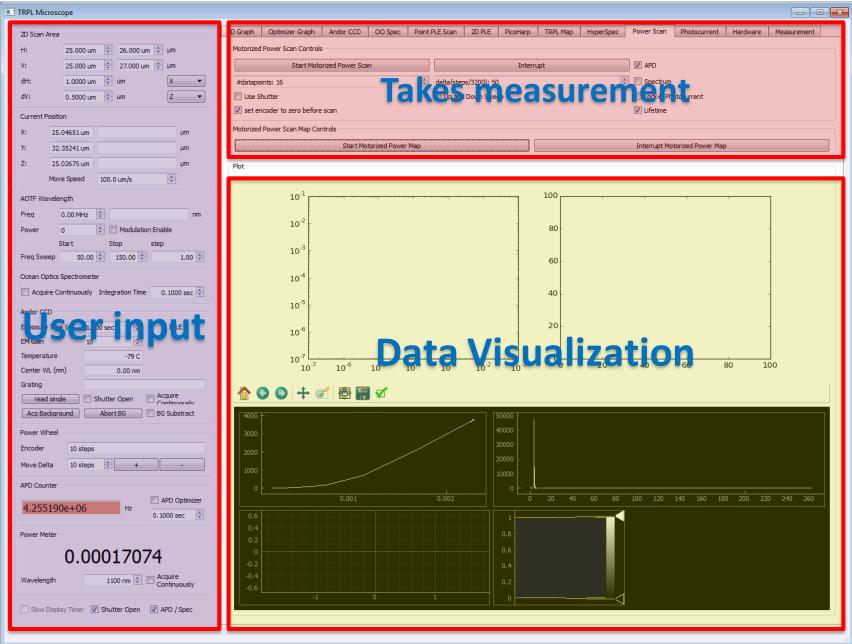
Inside the Black Box: What does Microscope Software Do?

Takes user input

- Integration time
- For series: delta time, number of images
- For scanning: scan rate, area

Takes measurements

- Moving stage to [x,y,z]
- Measures a specified property
- Storing the value associated with [x,y,z]


Magic

- Distortion corrections
- Background subtraction

Data visualization / Post-processing / Analysis

- Flattening
- Planarization
- Statistics

ScopeFoundry: A custom microscopy control platform

ScopeFoundry: A custom microscopy control platform

🛯 TRPL Mid	croscope			
2D Scan	Area	2D Graph Optimizer Graph Andor CCD OO Spec Point I	PLE Scan 2D PLE PicoHarp TRPL Map HyperSpec	Power Scan Photocurrent Hardware Measurement
H:	25.000 um 🔦 26.000 um 🔷 µm	Motorized Power Scan Controls		
v:	25.000 um 🔶 27.000 um 🚔 µm	Start Motorized Power Scan	Interrupt	APD
dH:	1.0000 um 💌 um 🛛 🗙	#datapoints: 16	delta(steps/3200): 50	Spectrum
dV:	0.5000 um 🛬 um 🛛 Z 💌	Use Shutter	Up and Down Sweep	Cock-in Photocurrent
-Current F	Position -	☑ set encoder to zero before scan		☑ Lifetime
x:	25.0465 um			
Y:	32.3524 um			Interrupt Motorized Power Map
Z:	25.0267 um			
	Move Spend 100.0 um/s			
AOTF Wa	avelength			
Freq	0.00 Hz 🔄 m			
Power	0 🔄 🕅 Modulation Enable			
	Start Stop step			
Freq Swe	eep 0.00 🔄 150.00 🔄 1.00 🔄			
Ocean O	ptics Spect ometer	M/horo/c tho m	agie?	
C Acqu	ire Continuusly Integration Time 0.1000 sec 😫	Where's the m		
Andor CO				
Exposure	e Time (s) 1.000 sec			
EM Gain	10	There is no ma	agic.	
Tempera Center V				40 60 80 100
Grating	you car	n <i>read, modify</i> and <i>un</i>	<i>iderstand</i> the code	
read				
Acg Ba	ackground Abort BG			
Power W	heel			
Encoder	10 teps			
Move De	elta 10 teps 🗄 🔤 + 🔤 🔤 -			
APD Cou	nter			
	APD Optimizer			100 120 140 160 180 200 220 240 260
4.255	5190e+ 6			
Power Me	eter			
	000017074			
	0.0001/0/1	-0.2	0.4	
Wavelen	igth 1100 nm 🚔 🔲 Acquire Continuously	-0.4	0.2 -	
	Contractory	-0.6	1 0	
Slow	Display Timer 📝 Shutter Open 📝 APD / Spec			

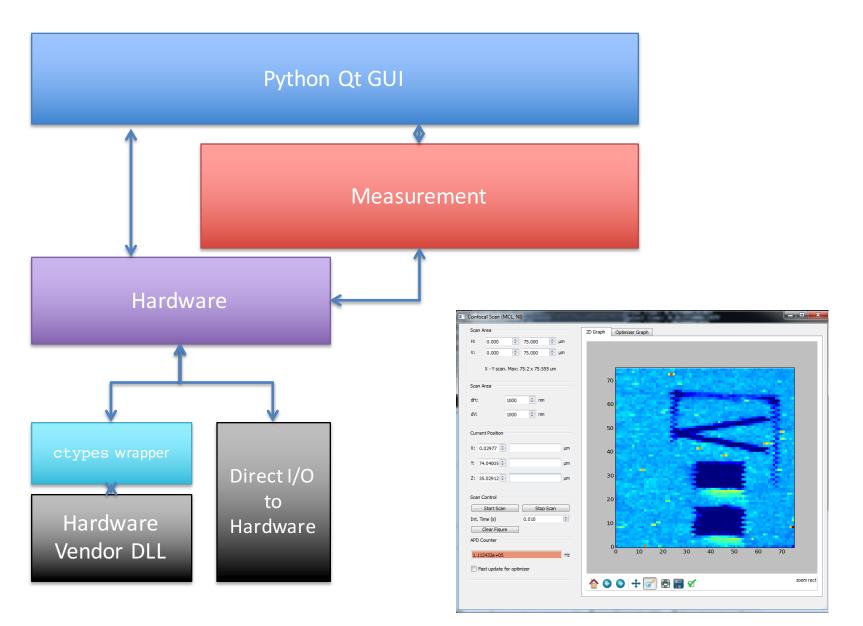
ScopeFoundry: A custom microscopy control platform

Flexible open-source tools for microscopy and lab equipment control and data acquisition

- Modular, multi-threaded Python GUI allows for fast data acquisition and visualization
- Rapid GUI builder with QT Creator
- Live updates of code for fast development and debugging
- Python bindings to C hardware driver APIs

Components Needed for Microscope Software

• Graphical User Interface


- Plots / Visualizations
- parameter entry: Hardware & Measurement
- Actions start/stop, calibrate
- Hardware
 - Wrapper for vendor supplied driver
- Measurement
 - Threaded data acquisiton
 - Hardware control and coordination
 - Independent of user interface
 - Store data and write it disk
 - GUI output/visualization of data

Measurement (Threaded Data Acq)

ScopeFoundry Modules

Starter Interface

User	Designe	bd	
	Interfac		

H +61.80 um [0], V +42.94 um [0]: 0.00e+00 Hz

Custom Graphical Interface

Simple XY Scan

2.000 um

2.000 um

40

H +61.80 um [0], V +42.94 um [0]: 0.00e+00 Hz

Start

Progress:

0 Nh

٢

Nv 11

50

Interrupt

0

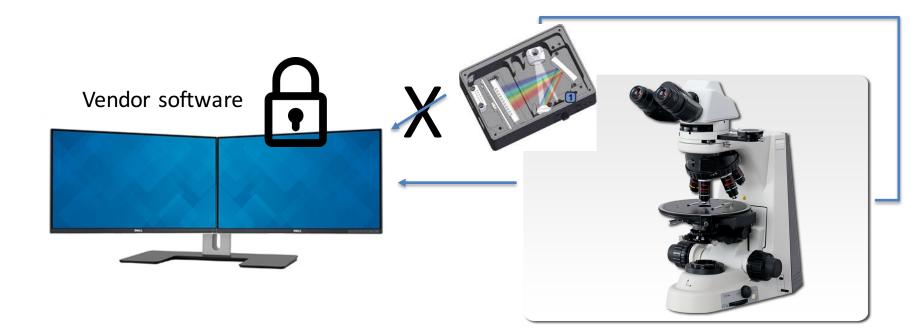
\$

0.00 %

11

٢

\$

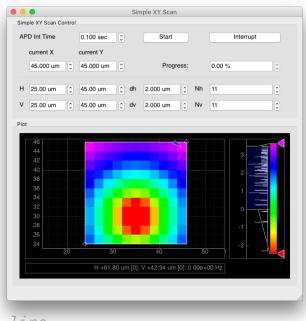

🗘 dh

0 dv

30

0	Untitled*		<		
: Name: እ	Untitled image			Simple XY Scan Contro	1
Width:	32	▲	· ·	APD Int Time	0.100 sec
: Height:	32		current X 45.000 um	current Y 45.000 um	
Color depth:		-		H 25.00 um 🗘	45.00 um
· · · · · · · · · · ·				V 25.00 um 🗘	45.00 um
		Cancel PyQtGraph]:	46 44 42 40 38 36 34 32 30 28 26 24	
Qt Designe	r RAD			29	H +61

Power of control over your microscope


Measurement: Simple scanning example

Threaded Run Loop:

for jj in range(self.Ny):
 y = self.y_array[jj]
 self.stage.y_position.update_value(y)
 self.h5_file.flush() # flush data to file every line

for ii range(self.Nx):
 self.stage.x_position.update_value(self.x_array[ii])
 # each pixel:
 # acquire signal and save to data array
 self.pixel_i += 1
 self.apd_count_rate.read_from_hardware()
 self.apd_map_h5['data'][jj,ii] = self.apd_count_rate.val
 spectrum = self.andor_ccd.read_spectrum()
 self.spec_h5['data'][jj,ii,:] = spectrum[:]

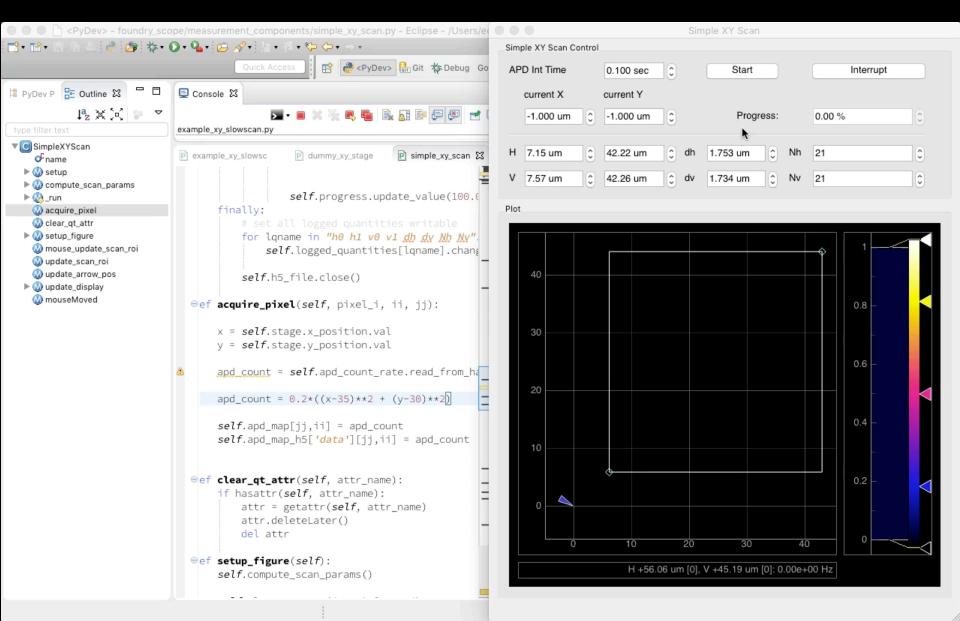
Instant Hyper-spectral Imaging

Demos

- 1. Interactive User Interface
- 2. In-depth online data access and control
- 3. Live code updates great for debugging!

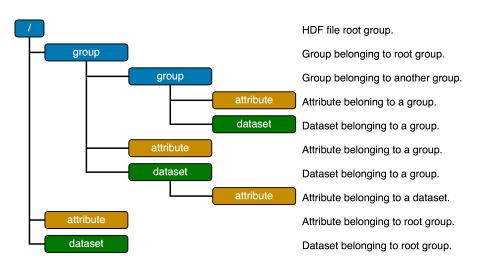
Interactive User Interface

7


help

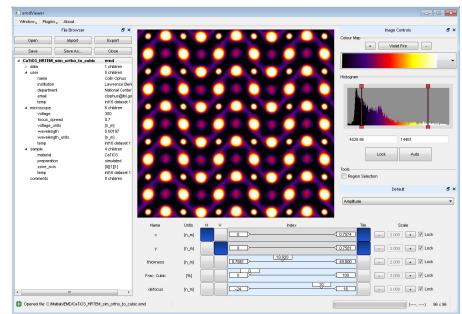
Simple XY Scan Simple XY Scan Control Jupyter OtConsole 4.1.1 Python 2.7.11 |Anaconda 2.4.1 (x86_64)| (default, Dec 6 2015, 18:57:58) APD Int Time 0.100 sec 0 Start Interrupt Type "copyright", "credits" or "license" for more information. current Y current X IPython 4.0.1 -- An enhanced Interactive Python. -> Introduction and overview of IPython's features. Progress: -1.000 um 0 -1.000 um 0.00 % \$ %quickref -> Quick reference. -> Python's own help system. H 25.00 um 45.00 um 0 dh 2.000 um 0 Nh 11 \$ 0 -> Details about 'object', use 'object??' for extra details. object? %guiref -> A brief reference about the graphical user interface. V 25.00 um \$ 0 0 Nv 11 \$ 45.00 um dv 2.000 um In [1]: import matplotlib.pyplot as plt Plot In [2]: %matplotlib inline 40 In [3]: xy = gui.measurement_components['simple_xy_scan'] In [4]: 0.8 2 0.6 0.4 10 0.2 0 10 20 30 40 H +29.72 um [0], V +23.51 um [0]: 0.00e+00 Hz

IPython interactive data access


É python				۵ 💱 🎸 🖲) 🜔 💻 5	ı ⊖ i	0 🔽 📖	* (((;-	d) 42% 🔲)• Mon 8:41 PM 🔍
	ScopeFoundry I	Python Console					Simple XY	Scan		
Fell we he wade		I	Si	mple XY Scan Cor	itrol					
[8]: xy.h0.updat	te_value(10)	Ţ	A	PD Int Time	0.010 sec	0	Start		Inte	rrupt
				current X	current Y					
				33.498 um	28.944 un	n 🗘	Progr	ess:	0.00 %	٢
			-							
			F	15.00 um	33.50 um	0 dh	1.233 um	C N	n 16	٢
			v	12.22 um	28.94 um	0 dv	1.672 um	() N	/ 11	٢
					<u> </u>					
			Ple	ot						
										60
				40						
										50 -
				30				$\sim \phi$		
				20						
				10		\$				20
				o						
					0 10		20 30)	40 5	
						н	10.02 um (0). V	+46.90 ι	ım [0]: 0.00e+00) Hz
									(e)-a.e.e	

Live Code Update

Data


Standarizing data formats: HDF5

HDF5:

Open source library for handling hierarchical data with 'attributes' (i.e. metadata)

Programming language agnostic

EMDViewer

NCEM is developing an open source viewer for N-dimensional HDF5 data

Colin Ophus http://emdatasets.lbl.gov/

Conclusions

- ScopeFoundry used in many measurement techniques at the Molecular Foundry, NCEM.
 Not all are scanning microscopy
- General availability soon!
- Come talk to us about using it for your experiments