

The Mystery of *Cold Noise* in ATLAS ITk Strip Modules

ITk Upgrade

- ATLAS is replacing its inner detector for the High-Luminosity LHC.
	- More interactions per bunch crossing ($\langle \mu \rangle \approx 50 \rightarrow 200$).
	- Higher trigger rate (100 kHz \rightarrow 1 MHz).
	- Worse radiation damage (up to 2×10^{16} n_{eq}/cm^2).
- Installing new, all silicon Inner Tracker (ITk).
	- Pixel modules for inner layers, strip modules for outer layers.
	- LBNL heavily involved in both pixels & strips.
		- Plus global mechanics & integration.

tt event at $\mu = 200$

ITk Strip Detector

- Barrel composed of rectangular staves.
	- Assembled in 4 concentric cylinders around interaction point.
	- 14 identical modules on each side.
- Endcaps composed of petals.
	- 32 petals form a disk, 6 disks per endcap.
	- 6 different module geometries.

Silicon sensor:

- Multiple rows of 1280 strips with a 75 μ m pitch.
	- Long-strip sensor \rightarrow 2 rows, strip length \approx 5 cm.
	- Short-strip sensor \rightarrow 4 rows, strip length \approx 2.5 cm.

Hybrid:

- Printed circuit board holding the read-out ASICs.
	- 10 ABCs: amplify and discriminate signal.
	- 1 HCC: interface between ABCs and back-end electronics.

Powerboard:

• ASIC power, monitoring & interlock, HV-switching for sensor biasing.

Silicon sensor:

- Multiple rows of 1280 strips with a 75 μ m pitch.
	- Long-strip sensor \rightarrow 2 rows, strip length \approx 5 cm.
	- Short-strip sensor \rightarrow 4 rows, strip length \approx 2.5 cm.

Hybrid:

- Printed circuit board holding the read-out ASICs.
	- 10 ABCs: amplify and discriminate signal.
	- 1 HCC: interface between ABCs and back-end electronics.

Powerboard:

- ASIC power, monitoring & interlock, HV-switching for sensor biasing.
- Front-end chips require 1.5V, but distribute 11V to modules.
	- Use buck converter w/ air-core coil for DC-DC conversion.
	- 2 MHz switching \rightarrow EMI \rightarrow noise in silicon strips.
		- Mitigated by aluminum shield box.

Ian Dyckes **International Contract Contrac**

Silicon sensor:

- Multiple rows of 1280 strips with a 75 μ m pitch.
	- Long-strip sensor \rightarrow 2 rows, strip length \approx 5 cm.
	- Short-strip sensor \rightarrow 4 rows, strip length \approx 2.5 cm.

Hybrid:

- Printed circuit board holding the read-out ASICs.
	- 10 ABCs: amplify and discriminate signal.
	- 1 HCC: interface between ABCs and back-end electronics.

Powerboard:

- ASIC power, monitoring & interlock, HV-switching for sensor biasing.
- Front-end chips require 1.5V, but distribute 11V to modules.
	- Use buck converter w/ air-core coil for DC-DC conversion.
	- 2 MHz switching \rightarrow EMI \rightarrow noise in silicon strips.
		- Mitigated by aluminum shield box.

Short-strip module

Ian Dyckes **AUG 16, 2023** 6 and 2023 6 and 2023

Silicon sensor:

- Multiple rows of 1280 strips with a 75 μ m pitch.
	- Long-strip sensor \rightarrow 2 rows, strip length \approx 5 cm.
	- Short-strip sensor \rightarrow 4 rows, strip length \approx 2.5 cm.

Hybrid:

- Printed circuit board holding the read-out ASICs.
	- 10 ABCs: amplify and discriminate signal.
	- 1 HCC: interface between ABCs and back-end electronics.

Powerboard:

- ASIC power, monitoring & interlock, HV-switching for sensor biasing.
- Front-end chips require 1.5V, but distribute 11V to modules.
	- Use buck converter w/ air-core coil for DC-DC conversion.
	- 2 MHz switching \rightarrow EMI \rightarrow noise in silicon strips.
		- Mitigated by aluminum shield box.

Long-strip module

Ian Dyckes **AUG 16, 2023**

ITk Strip Sensor

Silicon sensor:

- n-type Si strips implants on p-type Si bulk \rightarrow p-n junction.
- Apply -350V reverse bias between implants and aluminum backplane.
	- Depletion zone grows as charge carriers removed from bulk.
- Charge particles passing through will ionize Si in depletion zone.
	- Electrons drift to n⁺ strip implant.
	- Holes drift to sensor backplane.
- Aluminum bond pads are AC coupled to each strip.
	- Pads are wire bonded to ABC chips.

Ian Dyckes **AUG 16, 2023**

 Q'

1: Schematic repre

Introduction to cold noise

Cold Noise Intro

X Hybrid Stream 0 Input Noise at 1.50 fC

Background:

- Early last year, observed high noise channels appearing when testing modules at cold temperatures.
- Generally reversible by returning to room temp.
- This "cold noise" is now only seen on barrel modules.
	- Was seen on earlier versions of endcap modules.
- Eventually decided to pause pre-production to investigate.
- Long campaign of custom builds and imaginative tests.
	- Will only highlight the most interesting studies here.

Ian Dyckes **AUG 16, 2023** 10 and 2023 10

Measuring Noise

Binary Readout:

- ABCs amplify & discriminate signal from strips.
	- 1 bit per LHC BX indicating if strip above threshold.
	- Tune to balance signal efficiency vs. noise.

Noise metric:

- Scan threshold & measure occupancy \rightarrow S-curve.
	- Error function \rightarrow derivative is a gaussian.
	- Mean \rightarrow vt50, width \rightarrow output noise.
- Input noise [ENC] = output noise [voltage] / CSA gain [voltage / charge]

Ian Dyckes **11** November 2014 11 November 2023 12:00 16, 2023 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 11

Thermal Cycling Setup

- Can electrically test up to 4 modules simultaneously.
- Nominal module QC: thermal cycle each module 10× from -35C to +40C (chuck temp).
	- Diagnostic stress tests: can reach -50C (and probably even colder).

Early Observations:

• Only appears on the strip rows under the hybrids & PB.

Short-strip module

Early Observations:

- Only appears on the strip rows under the hybrids & PB.
- Tends to appear in certain regions.
	- Correlated with glue under hybrids.

Short-strip module

Early Observations:

- Only appears on the strip rows under the hybrids & PB.
- Tends to appear in certain regions.
	- Correlated with glue under hybrids.
- Worsens with load on DC-DC converter.
	- Can increase load by shunting current on ABCs.

Early Observations:

- Only appears on the strip rows under the hybrids & PB.
- Tends to appear in certain regions.
	- Correlated with glue under hybrids.
- Worsens with load on DC-DC converter.
	- Can increase load by shunting current on ABCs.
- Noise "freezes-in" during $1st$ thermal cycle.
	- Persists while warming.
	- Occasionally have residual "cold" noise at room temp!

Early Observations:

- Only appears on the strip rows under the hybrids & PB.
- Tends to appear in certain regions.
	- Correlated with glue under hybrids.
- Worsens with load on DC-DC converter.
	- Can increase load by shunting current on ABCs.
- Noise "freezes-in" during $1st$ thermal cycle.
	- Persists while warming.
	- Occasionally have residual "cold" noise at room temp!
		- But can "bake-out" by going warmer.

Bake-out

Early Observations:

- Only appears on the strip rows under the hybrids & PB.
- Tends to appear in certain regions.
	- **Correlated with glue under hybrids.**
- Worsens with load on DC-DC converter.
	- Can increase load by shunting current on ABCs.
- Noise "freezes-in" during 1st thermal cycle.
	- Persists while warming.
	- Occasionally have residual "cold" noise at room temp!
		- But can "bake-out" by going warmer.

Glue dependence:

- Severity varies greatly among "nearly identical" epoxies.
	- Unable to correlate with any info in data sheets…

AUG 16, 2023

Early Observations:

- Only appears on the strip rows under the hybrids & PB.
- Tends to appear in certain regions.
	- **Correlated with glue under hybrids.**
- Worsens with load on DC-DC converter.
	- Can increase load by shunting current on ABCs.
- Noise "freezes-in" during 1st thermal cycle.
	- Persists while warming.
	- Occasionally have residual "cold" noise at room temp!
		- But can "bake-out" by going warmer.

Glue dependence:

- Severity varies greatly among "nearly identical" epoxies.
	- Unable to correlate with any info in data sheets…
- Thicker glue layers under PB and hybrid(s) can reduce CN.
- Softer "glues" (Sylgard encapsulant, SE-4445 gel) remove CN.
	- Only diagnostic, not suitable for detector.

AUG 16, 2023

Highlighting the most insightful studies

Motivation:

- Is the source of cold noise on hybrid or powerboard?
- Can factor the two by bypassing the PB for hybrid power.
	- Remove low voltage power bonds between PB & hybrids.
	- Power hybrids directly with power supply.

Motivation:

- Is the source of cold noise on hybrid or powerboard?
- Can factor the two by bypassing the PB for hybrid power.
	- Remove low voltage power bonds between PB & hybrids.
	- Power hybrids directly with power supply.

Tests:

- 1. PB off \rightarrow no cold noise.
- 2. PB on, but no load on DC-DC \rightarrow still no cold noise.

Motivation:

- Is the source of cold noise on hybrid or powerboard?
- Can factor the two by bypassing the PB for hybrid power.
	- Remove low voltage power bonds between PB & hybrids.
	- Power hybrids directly with power supply.

Tests:

- 1. PB off \rightarrow no cold noise.
- 2. PB on, but no load on DC-DC \rightarrow still no cold noise.
- 3. PB on with resistive load on DC-DC emulating hybrids \rightarrow cold noise!

Ian Dyckes **23**

Motivation:

- Is the source of cold noise on hybrid or powerboard?
- Can factor the two by bypassing the PB for hybrid power.
	- Remove low voltage power bonds between PB & hybrids.
	- Power hybrids directly with power supply.

Tests:

- 1. PB off \rightarrow no cold noise.
- 2. PB on, but no load on DC-DC \rightarrow still no cold noise.
- 3. PB on with resistive load on DC-DC emulating hybrids \rightarrow cold noise!
	- Even appears near HCC, far from PB!

Ian Dyckes **24** 24

DCDC-Synchronous Triggering (UBC, LBL, RAL)

Motivation:

- DC-DC on powerboard switches at 2 MHz \rightarrow measurable EMI.
	- Mitigated by shield box.
- PB appears to be (at least partially) responsible for CN.
	- Perhaps CN is somehow related to the DC-DC switching?

Setup:

- Place a magnetic field probe over PB shield box \rightarrow 2 MHz signal.
- Use magnetic field to trigger module readout.
	- Scan over the trigger delay \rightarrow noise occupancy vs DC-DC phase.
- Perform on warm and cold modules.

Ian Dyckes **AUG 16, 2023** 25

DCDC-Synchronous Triggering

Warm Results:

- Showing occupancy of each channel vs trigger delay [ns].
	- Focusing on row of strips under PB & X-hybrid.
- As expected, observe:
	- Higher noise on strips near DC-DC.
	- Higher noise when in phase with DC-DC. \rightarrow Horizontal bars spaced by 500ns.

DCDC-Synchronous Triggering

Warm Results:

- Showing occupancy of each channel vs trigger delay [ns].
	- Focusing on row of strips under PB & X-hybrid.
- As expected, observe:
	- Higher noise on strips near DC-DC.
	- Higher noise when in phase with DC-DC. \rightarrow Horizontal bars spaced by 500ns.

Cold Results:

- In addition to the expected effects, see diagonal bands.
	- Coincide with channels exhibiting cold noise!
- Looks like a wave of noise is traveling across sensor!
- Is something to vibrating on the powerboard?
	- At DC-DC switching frequency (2 MHz)?
- Is a mechanical wave coupling into sensor & traveling?
	- If so, what are its properties?

Channel Number

Ian Dyckes **AUG 16, 2023** 27

Lamb Waves

Brief Introduction:

- Sinusoidal solutions to wave equation in flat plates.
	- Family of symmetric (S_n) and anti-symmetric (A_n) solutions.
- Only S_0 and A_0 at low frequencies.
	- Higher order modes have cut-off frequencies ≥ 10 MHz.
	- S_0 and A_0 most important when $\lambda \gg$ plate thickness.
- Suspect we are seeing A_0 .
	- A_0 (flexural mode) \rightarrow particles move perpendicular to sensor plane.
	- S_0 (extensional mode) \rightarrow particles move parallel to plane.

Lamb Waves

Brief Introduction:

- Sinusoidal solutions to wave equation in flat plates.
	- Family of symmetric (S_n) and anti-symmetric (A_n) solutions.
- Only S_0 and A_0 at low frequencies.
	- Higher order modes have cut-off frequencies ≥ 10 MHz.
	- S_0 and A_0 most important when $\lambda \gg$ plate thickness.
- Suspect we are seeing A_0 .
	- A_0 (flexural mode) \rightarrow particles move perpendicular to sensor plane.
	- S_0 (extensional mode) \rightarrow particles move parallel to plane.

Lamb Waves

Brief Introduction:

- Sinusoidal solutions to wave equation in flat plates.
	- Family of symmetric (S_n) and anti-symmetric (A_n) solutions.
- Only S_0 and A_0 at low frequencies.
	- Higher order modes have cut-off frequencies ≥ 10 MHz.
	- S_0 and A_0 most important when $\lambda \gg$ plate thickness.
- Suspect we are seeing A_0 .
	- A_0 (flexural mode) \rightarrow particles move perpendicular to sensor plane.
	- S_0 (extensional mode) \rightarrow particles move parallel to plane.

Plugging in some numbers:

- $f_{\text{DCDC}} = 2 \text{ MHz}$, thickness = 0.3 mm $\rightarrow v = 2.7 \frac{\text{km}}{\text{s}}$, $\lambda = 18 \text{ strips}.$
- Does this agree with our data?

 $v =$ λ = \approx

9

8

 $\overline{7}$

Phase Velocity [m/ms]

3

 $\overline{2}$

 $\mathbf{1}$

 $\mathbf 0$ $\overline{0}$ $T_{\rm DCDC} = 20 \,\rm BX$

DCDC-Synchronous Delay Scan (Revisited)

- Calculated power spectrum for every step in a delay scan (step size $=$ 1 LHC bunch crossing $=$ 25 ns).
- Suspect something is vibrating at the DC-DC switching frequency, $f_{\text{DCDC}} \approx 2$ MHz.
	- Dispersion plot (at +20C) $\rightarrow v \approx 2.7$ km/s, $\lambda \approx 18$ strips.
	- See a peak near here in the spectrum!
-

Vibrating Transducer Studies: Building confidence in the vibration theory

Intentionally Vibrating Mo

Motivation:

- Suspect powerboard is producing vibrations.
	- Somehow mechanical waves \rightarrow electrical noise.
- Suspect module is vibrating at all temperatures.
	- Then something changes at cold temperatures (stress?) \rightarrow cold noise turn-on.
- Maybe we can induce "cold" noise at room temperature...

Test:

- Placed transducer on PB shield box w/ coupling gel.
	- No conductive path from transducer to shield box.
- Drove transducer at resonant frequency (1 MHz) with AFG.
- Performed electrical characterization at +20C.

Intentionally Vibrating Modules

Motivation:

- Suspect powerboard is producing vibrations.
	- Somehow mechanical waves \rightarrow electrical noise.
- Suspect module is vibrating at all temperatures.
	- Then something changes at cold temperatures (stress?) \rightarrow cold noise turn-on.
- Maybe we can induce "cold" noise at room temperature...

Test:

- Placed transducer on PB shield box w/ coupling gel.
	- No conductive path from transducer to shield box.
- Drove transducer at resonant frequency (1 MHz) with AFG.
- Performed electrical characterization at +20C.

Results:

Noise pattern ω +20C w/ transducer looks like CN pattern @ -35C (w/out transducer), but worse.

Input Noise (ENC

Transducer-Synchronous Triggering

Next step:

- Instead of triggering randomly (previous slide), synch trigger with transducer.
- Synchronized 2 waveform generators.
	- Top AFG drives transducer at 3 different frequencies (resonant at 1 MHz).
	- Bottom AFG sends trigger to module at ~80 kHz.
- Scanned trigger delay \rightarrow noise occupancy vs. transducer phase.

x-axis: strip number y-axis:1 BCO \rightarrow 25 ns

Transducer-Synchronous Triggering

Showing only strip rows covered by hybrids and PB.

Showing only strip rows covered by hybrids and PB.

Transducer-Synchronous Triggering

wave properties:

x-axis: strip number y-axis:1 BCO \rightarrow 25 ns

- $v_p \approx \frac{1}{2}$ $\frac{1}{2}v_g \sim \sqrt{f}$ for low f ($\lambda \gg$ plate thickness).
- Can we see $v \sim \sqrt{f}$ dependence?

HY HCC Spectrum (Channels 0-200) @ -35C

- For calculating power spectrum, zoomed in on HCC region on the Y-hybrid.
	- Cleanest signal, especially at higher frequency.
- Can guess which peak corresponds to a wave traveling at $f_{trans} \rightarrow$ can calculate $v(f) = \lambda(f) \times f$.
	- Only three points, but roughly follows expected $v \sim \sqrt{f}$ behavior for A_0 wave.

Vibration Summary

Summary:

- Fairly confident something is vibrating on the powerboard at $f_{\text{DCDC}} \approx 2 \text{ MHz}$.
	- Likely vibrating at all temperatures.
	- But something changes when cold (stress?) \rightarrow cold noise turn-on.
- "Cold" noise pattern reproduced at room temp by vibrating module with transducer.
- Mechanical wave couples into sensor & travels \rightarrow noise on strips far from PB.
	- Velocity and wavelength consistent with A_0 Lamb wave.

Questions:

- What component is vibrating?
- How do mechanical waves produce electrical noise?

The Powerboard: A Closer Look

Voltage Stepdown:

- Front-end ASICs need 1.5V.
	- But distribute 11V to modules & use DC-DC conversion.
	- Reduces ohmic losses in cables & traces.
- Use a buck converter (bPOL) w/ air-core coil on powerboard.
	- More efficient than a linear regulator \rightarrow less heat.
	- But 2 MHz switching \rightarrow EM noise (hence shield box).

HV switch **Buck converter**

Ian Dyckes **AUG 16, 2023 12, 2023 12, 2023 12, 2023**

The Powerboard: A Closer Look

Voltage Stepdown:

- Front-end ASICs need 1.5V.
	- But distribute 11V to modules & use DC-DC conversion.
	- Reduces ohmic losses in cables & traces.
- Use a buck converter (bPOL) w/ air-core coil on powerboard.
	- More efficient than a linear regulator \rightarrow less heat.
	- But 2 MHz switching \rightarrow EM noise (hence shield box).

Filtering:

- Output of buck converter has some ripple.
	- Smooth with pi filters on both 11V & 1.5V lines.
	- Caps are piezoelectric! Are they vibrating?

 S

Ian Dyckes **AUG 16, 2023** 41

Vibrometer Measurements (RAL)

- Vibrations confirmed using laser doppler vibrometer at RAL.
	- See $O(10 \text{ pm})$ $O(1 \text{ nm})$ vibrations, depending on location on module.
- Caps on pi filters are driving vibrations, with 11V caps having ~10x larger amplitude compared to 1.5V caps (higher dV/dt).
- Vibrations are coupling into sensor.
	- Amplitude is fairly independent of temperature, but the propagation changes (standing waves when cold).
- We're not alone also see vibrations on DC-DC converter boards currently installed in CMS.

Mitigations Strategies

Strategy #1: Picking the right glue & glue thickness

Observations:

- CN severity varies greatly with glue type.
- Generally, thicker glue layers reduce CN.

Evaluated epoxies:

- Polaris PF-7006 2-part epoxy
	- Previous baseline, no longer available.
	- Discovered CN with this glue.
- Loctite Eccobond F112 ("True Blue")
	- Previous backup, new baseline.
	- Better CN performance than Polaris.
- AA-BOND F112 ("False Blue")
	- Should be very similar to True Blue.
	- But observe much worse CN.

Y Hybrid Stream 0 Input Noise at 1.50 fC

Strategy #1: Picking the right glue & glue thickness

Observations:

- CN severity varies greatly with glue type.
- Generally, thicker glue layers reduce CN.

Evaluated epoxies:

- Polaris PF-7006 2-part epoxy
	- Previous baseline, no longer available.
	- Discovered CN with this glue.
- Loctite Eccobond F112 ("True Blue")
	- Previous backup, new baseline.
	- Better CN performance than Polaris.
- AA-BOND F112 ("False Blue")
	- Should be very similar to True Blue.
	- But observe much worse CN.

X Hybrid Stream 0 Input Noise at 1.50 fC

Mitigation plan:

- True blue with the nominal thickness (120 μ m) is good enough for LS modules.
	- Can double the glue thickness for SS modules.

Ian Dyckes **AUG 16, 2023** 45

Y Hybrid Stream 0 Input Noise at 1.50 fC

Strategy $#2$: Modifying the power

Swapping components:

- Attempts to solve CN by modifying components on PB have failed.
	- Caps on stilts (smaller vibrations).
	- $0805 \rightarrow 0603$ (different frequency response).
	- Removed caps completely.
	- And more…
- Using tantalum capacitors helps (not piezoelectric).
	- But not radiation hard.

Ian Dyckes AUG 16, 2023

Strategy #2: Modifying the powerboard

Swapping components:

- Attempts to solve CN by modifying components on PB have failed.
	- Caps on stilts (smaller vibrations).
	- $0805 \rightarrow 0603$ (different frequency response).
	- Removed caps completely.
	- And more…
- Using tantalum capacitors helps (not piezoelectric).
	- But not radiation hard.

Changing the substrate:

- Recent endcap modules do **not** have CN.
- Inspired some special builds:
	- Barrel PB on endcap module \rightarrow CN.
	- Endcap PB on barrel module \rightarrow no CN.
- Endcap has different powerboard flex PCB manufacturer (Würth).
	- Thinner & more flexible than barrel PBs.
	- Different stack-up & vias (barrel = through hole, endcap = staggered microvias).
	- Acrylic instead of epoxy.
- Ordered PB flexes from Würth using barrel layout but endcap process (so stacked microvias).

Ian Dyckes **AUG 16, 2023** 47

Strategy #2: Modifying the powerboard

- Vibrometer tests of standalone PBs were encouraging.
	- Caps vibrate much less than on nominal barrel PB flexes.
	- Although the difference is small at 2 MHz...

Strategy #2: Modifying the powerboard

Barrel PBs in endcap process:

- Vibrometer tests of standalone PBs were encouraging.
	- Caps vibrate much less than on nominal barrel PB flexes.
	- Although the difference is small at 2 MHz…
- But severe CN observed on modules with Würth PB.
	- Will try again with staggered microvias like endcap...

<u>Ian Dyckes AUG 16, 2023</u> AUG 16, 2023 AUG 16, 2023

Strategy #3: Filling in the gaps

Observation:

• CN channels are correlated with glue dots & dashes on hybrid back-end.

Speculation:

- Maybe PB & hybrid glue form resonant cavity \rightarrow waves reflecting back and forth.
- Perhaps glue is undergoing some transition that affects reflectivity \rightarrow CN turn-on.

Possible fix:

- Fill the gaps between hybrids and PB with the same glue to reduce reflections.
	- Important to use glue with same "index of refraction".
- Waves must then travel farther before reflecting.

Strategy #3: Filling in the gaps

Procedure:

- Filled in gaps between hybrids and PB on existing module.
	- Originally built with worst glue (False Blue) \rightarrow severe cold noise.
	- Filled gaps with more False Blue.

Results:

- Almost completely removed the cold noise!
- Repeated w/ more modules and other glues \rightarrow similar improvements!
	- Results hold up over 50+ (extra stressful) thermal cycles!
- Need to develop a production friendly process & better understand the stress.
	- Filling gaps with a glue syringe is too tedious.

Mechanical Wave \rightarrow Electrical Signal Mechanism

Voltage Source

Speculation:

- Have evidence suggesting cold "noise" is not Gaussian noise (see backup).
- Appears vibrations produce AC voltage between strips and hybrid.
	- Causes *effective* discrimination threshold to oscillate.
- How is this AC voltage produced from mechanical waves?
- $SiO₂$ and $Si₃N₄$ in passivation & dielectric known to be piezoelectric...
	- Module built using old sensor w/ less passivation \rightarrow less CN.
	- CN appears to be independent of bias voltage.

 $p++ring$

1: Schematic repres

Voltage Source

Speculation:

- Have evidence suggesting cold "noise" is not Gaussian noise (see backup).
- Appears vibrations produce AC voltage between strips and hybrid.
	- Causes *effective* discrimination threshold to oscillate.
- How is this AC voltage produced from mechanical waves?
- $SiO₂$ and $Si₃N₄$ in passivation & dielectric known to be piezoelectric...
	- Module built using old sensor w/ less passivation \rightarrow less CN.
	- CN appears to be independent of bias voltage.

Test for (inverse) piezoelectricity:

- 1. Vibrate a sensor and look for signs of piezoelectricity.
	- Drive a piezoelectric actuator to vibrate a sensor.
	- Measure voltage between AC pad & implant.
	- *Hard to control electrical noise from actuator…*
- 2. Do the opposite.
	- Apply AC voltage between AC pad & implant.
	- Look for vibrations using a laser vibrometer.
	- *Not clear if vibration amplitudes will be large enough…*

1: Schematic repres

Ian Dyckes **AUG 16, 2023**

Concluding Thoughts

Putting It All Together (Speculative)

Vibrations:

- PB is always vibrating, at all temperatures.
	- Waves reflecting off glue-sensor interfaces.
	- Resonant cavities forming between hybrid and PB glue lines?

Phase transition:

- When cold, module undergoes phase transition.
	- Related to stress from CTE mismatch?
- Somehow affects how waves propagate and produce noise?
	- Mechanical impedance of glue changes?

Mechanical waves → electrical signal:

- Vibrations produce time-dependent voltage.
	- Possibly between strip implants and ASIC ground.
	- Piezoelectricity in AC coupling dielectric? Or in the glue?
- *Effective* discrimination threshold oscillates in phase with DC-DC converter.
	- Looks like gaussian noise when triggering asynchronously.

Summary

Cold noise

- Early last year, observed very noisy channels when testing modules at cold temperatures.
	- Decided to pause pre-production to investigate.
- Capacitors on the powerboard are vibrating at the DC-DC converter frequency (2 MHz).
	- Produces mechanical waves that travel through the sensor.
	- Confirmed by vibrometer measurements.
- Mechanical vibrations appear to be producing a voltage \rightarrow effective discrimination threshold oscillates.
	- Exact mechanism not yet understood.

Mitigation strategies:

- 1. Using a particular glue (True Blue) & possibly doubling its thickness.
	- Do not understand why this helps.
- 2. Redesigning the powerboard flex to more closely match the endcap.
	- Early results are discouraging, but we're trying new layout with staggered microvias.
- 3. Filling in the gaps between the hybrids & PB with more glue.
	- Very encouraging results, but need to develop a production-friendly process

Backup

Simultaneous Delay & Threshold Scan

Threshold scans:

- ATLAS Binary Chips amplify and discriminate strip signal.
	- Tunable threshold.
	- Balancing signal efficiency vs. noise rejection.
- Measure strip occupancy vs threshold \rightarrow S-curve.
	- Mean: 50% occ. threshold (vt50).
	- Width: output noise.

Simultaneous trigger delay & threshold scan:

- Vibrate module with 1 MHz transducer.
- Trigger module readout synchronous with transducer
	- Scan over trigger delay & discrimination threshold.
- Produce a vt50 & noise measurement for each trigger delay step.

Simultaneous Delay & Threshold Scan

- Observe more variation in the 50% occupancy threshold (vt50) than the output noise (σ) .
	- S-curves are shifting left and right with transducer.
- As if the "effective" threshold is shifting up and down in phase with the transducer.
	- Not some Gaussian noise source with a varying width.
- Time-dependent voltage difference between implant and hybrid/ASIC ground?

Ian Dyckes **AUG 16, 2023** 60

Mechanical Wave \rightarrow Voltage N

Overview:

- Magnetic triggering & transducer tests \rightarrow CN is the result of vibrations.
	- Fourier analysis \rightarrow consistent with Lamb waves.
	- Vibrations confirmed & studied with vibrometer.
- Not Gaussian noise, but instead a DCDC-synchronous voltage \rightarrow oscillating vt50.
- Do not understand how vibrations produce this voltage.
	- Piezoelectricity in the glue?
	- Piezoelectricity in the passivation/dielectric?
	- Electrostriction in the Silicon bulk?

Speculation:

- $SiO₂$ and $Si₃N₄$ is passivation & dielectric known to be piezoelectric...
	- Expect to be amorphous...
- Personally lean towards piezoelectricity in the passivation/dielectric.
	- CN appears to be independent of bias voltage.
	- Module built using old sensor w/ less passivation \rightarrow less CN.

 $p++$ rinc

1: Schematic represer

Ian Dyckes **AUG 16, 2023**

Test Idea

Inverse piezoelectricity in dielectric:

- Vibrate the coupling capacitor test structure on a halfmoon.
	- Square metal pad & implant separated by dielectric.
	- Simpler than sensor.
	- Size (~0.7 mm)² $\ll \lambda_{Si}$ of mechanical wave.
- Bond AC (10) & DC (11) pads to differential pair pads on frame.
	- Frame \rightarrow mini displayPort \rightarrow spy board \rightarrow diff probe \rightarrow amp \rightarrow scope.
- Look for periodic signal with $f = f_{trans}$.

lafer coordinat

sensor

ပ္ပ

T₂

Draft1812201400

10

Setup

- Halfmoon held to test frame by spacer w/ suction cups.
- Layer of rigid G10 between halfmoon & test frame pad.
	- Electrically isolating halfmoon backplane.
- Driving 152 kHz piezo with AFG at 10 Vpp (~0.5 μ m).
	- $\lambda_{Si} \gg$ coupling cap test structure \rightarrow mechanical wave amplitude is ~constant over structure.
	- Low frequency \rightarrow less radiative pickup.
- AC & DC pads bonded to differential pair pads on frame.
- Mini DP \rightarrow spy board \rightarrow diff. probe \rightarrow amp \rightarrow scope.
- Grounding & shielding important for controlling EMI.

Ian Dyckes **AUG 16, 2023**

Setup

- Halfmoon held to test frame by spacer w/ suction cups.
- Layer of rigid G10 between halfmoon & test frame pad.
	- Electrically isolating halfmoon backplane.
- Driving 152 kHz piezo with AFG at 10 Vpp (\sim 0.5 μ m).
	- $\lambda_{Si} \gg$ coupling cap test structure \rightarrow mechanical wave amplitude is ~constant over structure.
	- Low frequency \rightarrow less radiative pickup.
- AC & DC pads bonded to differential pair pads on frame.
- Mini DP \rightarrow spy board \rightarrow diff. probe \rightarrow amp \rightarrow scope.
- Grounding & shielding important for controlling EMI.

Ian Dyckes **AUG 16, 2023**

G10

Cu tape

with ba

Backplane Shorted to Implant

- Triggering on sync signal from AFG that's driving the piezo.
- Performing FFT (centered at 152 kHz).
- Differential signal is DC coupled into scope, averaging.
	- See signal matching piezo frequency!
- Could be EMI… Still investigating…
- Maybe easier to turn this process around:
	- Produce an AC voltage across the AC pad & implant \rightarrow mechanical deformation?
	- Look for vibrations with laser vibrometer.

$$
C_{\text{coupl}} = \frac{C_{\text{meas}}}{l_{5-\text{strip}}} = \frac{C_{\text{meas}}}{3.4 \text{ cm}} \ge 20 \text{ pF/cm}.
$$

Unbiased Si \rightarrow built-in depletion region \rightarrow parallel plate cap with small $d \rightarrow$ large C_{bulk} .

2 196

Acquisition

Average

Averages

512 Sampling Real Time

Ian Dyckes **AUG 16, 2023** 66

ITk Upgrade

250

200

150

100

50

 10

20

30

ATLAS Online

 \sqrt{s} = 13.6 TeV, 49 fb $^{-1}$

2022: $\langle \mu \rangle$ = 42.5 2023: $\langle \mu \rangle$ = 50.2

Total: $\langle \mu \rangle$ = 44.6

 $[1.01]$

Recorded Luminosity [pb

ITk Upgrade:

- ATLAS is replacing its inner detector for the High-Luminosity LHC.
	- More interactions per bunch crossing ($\langle \mu \rangle \approx 50 \rightarrow 200$).
	- Higher trigger rate (100 kHz \rightarrow 1 MHz).
	- Worse radiation damage (up to 2×10^{16} n_{eq}/cm^2).
- Installing new, all silicon Inner Tracker (ITk).
	- Pixels modules for inner layers, strip modules for outer layers.
	-

50

40

60

70

80

Run 3

ITk Strip Detector

Strip detector:

- Barrel composed of rectangular staves.
	- Assembled in 4 concentric cylinders.
	- 14 identical modules on each side.
- Endcaps composed of petals.
	- 32 petals form a disk, 6 disks per endcap.
	- 6 different module geometries.
- Staves & petals constructed from carbon fiber.
	- Each side covered with a "bus tape".
		- TTC/DCS/data transmission.
		- Power for ASICs & HV for sensor biasing.

Threshold Scans

Binary Readout:

- ABCs amplify & discriminate signal from strips.
	- Discriminated signal sampled once per 25ns BX \rightarrow 1 bit indicating if above threshold.
- Discriminator threshold can be tuned.
	- Balancing signal efficiency vs. noise.
	- Spec: >99% efficiency, <0.1% noise occupancy.

- Scan over threshold, triggering N times at each step.
	- With or without charge injection.
- Plot occupancy vs. threshold \rightarrow S-curve (error function).
	- Derivative is a gaussian.
	- Mean \rightarrow vt50, width \rightarrow output noise.

Response Curves, Gain, and Input Noise

Response Curve:

- Perform threshold scans while injecting charge.
	- Repeat for 10 different charges.
- For each charge injected, get s-curve.
	- Mean \rightarrow vt50.
	- Width \rightarrow output noise.
- Plot vt50 vs. injected charge \rightarrow response curve.
	- Slope \rightarrow gain.
- Input noise $=$ output noise / gain.
	- Most useful metric.

Input Noise

Response Curve:

- Perform threshold scans while injecting charge.
	- Repeat for 10 different charges.
- For each charge injected, get s-curve.
	- Mean \rightarrow vt50.
	- Width \rightarrow output noise.
- Plot vt50 vs. injected charge \rightarrow response curve.
	- Slope \rightarrow gain.
- Input noise = output noise / gain.
	- Most useful metric.

Required Performance

8.5 Expected End-of-Lifetime Performance

At the end-of-lifetime, modules are required to have greater than 99% detection efficiency at thresholds that allow for operation with less than 1×10^{-3} channel noise occupancy. It has been shown that requiring a signal-to-noise ratio of 10:1 will simultaneously satisfy these efficiency and noise occupancy requirements. For this signal-to-noise ratio calculation, the signal is defined to be the sum over a number of strips using a cluster algorithm and analogue read-out electronics operating at HL-LHC speeds and the noise is the average single-channel noise. Previous sections in this chapter have shown the signal, the hit

Table 8.2: Estimated signal-to-noise at the end-of-lifetime for all module types of the ITk Strip Detector. Maximal values of the Fluence include a safety factor of 1.5

1 Femtocoulombs $= 6241.5091258833$ Electron Charge

Table 1

÷,

Sensor specifications.

Table 2

Sensor performance specifications.

The Powerboard: A Closer Look

Voltage Stepdown:

- ABCs and HCC need 1.5V.
	- But distribute 11V to modules & use DC-DC conversion.
	- Reduce ohmic losses.
- Use a buck converter (bPOL) & air-core coil on powerboard.
	- More efficient than a linear regulator \rightarrow less heat.
	- But 2 MHz switching \rightarrow EM noise (hence shield box).

Moveable PB

 \rightarrow no cold noise anywhere!

- SCIPP built module with moveable PB.
	- No glue, shunts hardwired on, hybrid powered by PS, resistive load on PE
- PB in usual location on same strip segment as hybrid (stream 0) \rightarrow cold noise.
- PB on opposite strip segment (stream 1) \rightarrow no cold noise.
- Maybe hybrid and PB have to be on same segment?
	- PB vibrates segment \rightarrow wave travels to hybrid glue \rightarrow piezo effect \rightarrow voltage

Jacob Johnson, SCIPP

Ian Dyckes **AUG 16, 2023** 74 November 2023

Geography

- Does pattern point to specific features?
- Point source near HCC?
- What about near DCDC?
	- See "W"s, not "V"s...

Toy model:

- Point source.
- Undamped sine waves traveling perpendicular to strips at 2.2 km/s.
- Plotting amplitude.

G10 Cover

X Hybrid Stream 0 Input Noise at 1.50 fC

Creating an air gap:

- Placed transducer on G10 module cover, centered over shield box.
	- Not physically touching module (4 mm air + 2 mm G10) \rightarrow helps separate out EM noise from transducer.
- Noise pattern at -35C with transducer on G10 bridge is consistent with usual CN.
	- Not much EM noise on the under streams (plenty on away streams).

Ian Dyckes FEB 9, 2023 76

G10 Cover

Creating an air gap:

- Placed transducer on G10 module cover, centered over shield box.
	- Not physically touching module (4 mm air + 2 mm G10) \rightarrow helps separate out EM noise from transducer.
- See lots of EM noise on away streams when in phase with transducer.
	- Not much on the under streams.

HY Spectrum (All Channels) @ -35C

- Guessing which peak corresponds to a wave traveling at $f_{trans} \rightarrow$ can calculate $v(f) = \lambda(f) \times f$.
- Other peaks? Flexural waves traveling at other frequencies (harmonics of f_{trans})? Artifact of complex sensor/module structure?
	- Recall, speed is frequency dependent. So $2f \neq \lambda/2$.

Ian Dyckes **AUG 16, 2023 12, 2023 12, 2023 12, 2023**

- -

Ian Dyckes **AUG 16, 2023 12, 2023 12, 2023 12, 2023**

HX Spectrum (All Channels) ω -35C
 $f_{trans} = 1.057 \text{ MHz}$

- Cleanest signal at 1.540 MHz \rightarrow peak agrees well with Y hybrid.
-

HX HCC Spectrum (Channels 1050-1280) @ -35C

• Now focusing on HCC of HX, using same $v(f)$ as HY ("fitted" to HY power spectrum).

• 1.540 MHz spectrum matches well, but 0.453 MHz and 1.057 MHz do not.

• Lower frequencies have less clean signal in latency scan and fewer wavelengths for the DFT.

Ian Dyckes **AUG 16, 2023** 81

Phase and Group Velocity of Lamb Waves

properties*:*

- $v_p \approx \frac{1}{2}$ $\frac{1}{2}v_g \sim \sqrt{f}$ for low f ($\lambda \ll t$).
- As λ approaches plate thickness, $v_p \rightarrow$ Rayleigh speed. v_g hits i
	- Rayleigh speed close to shear (AKA transverse) speed.

Fig. 1 Dispersion curves of Lamb waves: (a) phase veloc https://www.researchgate.net/publication/264031140_Damage_localization_in_plate-like_s

Ian Dyckes AUG 16, 2023

• Then $\overline{}$

https://www.sciencedirect.com/science/article/pii/S026

