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ITk Upgrade

• ATLAS is replacing its inner detector for the High-Luminosity LHC.
• More interactions per bunch crossing ( 𝜇 ≈ 50à 200).
• Higher trigger rate (100 kHz à 1 MHz).
• Worse radiation damage (up to 2×10!" 𝑛#$/cm%).

• Installing new, all silicon Inner Tracker (ITk).
• Pixel modules for inner layers, strip modules for outer layers.
• LBNL heavily involved in both pixels & strips.

• Plus global mechanics & integration.

Run 3

𝑡 ̅𝑡 event at 𝜇 = 200
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ITk Strip Detector

• Barrel composed of rectangular staves.
• Assembled in 4 concentric cylinders around interaction point.
• 14 identical modules on each side.

• Endcaps composed of petals.
• 32 petals form a disk, 6 disks per endcap.
• 6 different module geometries.

Barrel EndcapEndcap

LBNL building these
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ITk Strip Barrel Module
Silicon sensor:
• Multiple rows of 1280 strips with a 75 𝜇m pitch.

• Long-strip sensor  à 2 rows, strip length ≈ 5 cm.
• Short-strip sensor à 4 rows, strip length ≈ 2.5 cm.

Hybrid:
• Printed circuit board holding the read-out ASICs.

• 10 ABCs: amplify and discriminate signal.
• 1 HCC: interface between ABCs and back-end electronics.

Powerboard:
• ASIC power, monitoring & interlock, HV-switching for sensor biasing.

HV switch Buck converter
Autonomous Monitor 

And Control ASIC

Short-strip module
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ITk Strip Barrel Module

Short-strip module

Silicon sensor:
• Multiple rows of 1280 strips with a 75 𝜇m pitch.

• Long-strip sensor  à 2 rows, strip length ≈ 5 cm.
• Short-strip sensor à 4 rows, strip length ≈ 2.5 cm.

Hybrid:
• Printed circuit board holding the read-out ASICs.

• 10 ABCs: amplify and discriminate signal.
• 1 HCC: interface between ABCs and back-end electronics.

Powerboard:
• ASIC power, monitoring & interlock, HV-switching for sensor biasing.
• Front-end chips require 1.5V, but distribute 11V to modules.

• Use buck converter w/ air-core coil for DC-DC conversion.
• 2 MHz switching à EMI à noise in silicon strips.

• Mitigated by aluminum shield box.
HV switch Buck converter

Autonomous Monitor 
And Control ASIC

2 MHz 
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ITk Strip Barrel Module

HV switch Buck converter

Y Hybrid

Short-strip module

X Hybrid

Strip Row 1

Strip Row 4

Strip direction

Powerboard

Silicon sensor:
• Multiple rows of 1280 strips with a 75 𝜇m pitch.

• Long-strip sensor  à 2 rows, strip length ≈ 5 cm.
• Short-strip sensor à 4 rows, strip length ≈ 2.5 cm.

Hybrid:
• Printed circuit board holding the read-out ASICs.

• 10 ABCs: amplify and discriminate signal.
• 1 HCC: interface between ABCs and back-end electronics.

Powerboard:
• ASIC power, monitoring & interlock, HV-switching for sensor biasing.
• Front-end chips require 1.5V, but distribute 11V to modules.

• Use buck converter w/ air-core coil for DC-DC conversion.
• 2 MHz switching à EMI à noise in silicon strips.

• Mitigated by aluminum shield box.

Autonomous Monitor 
And Control ASIC
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ITk Strip Barrel Module

HV switch Buck converter

Short-strip module
Strip Row 1

Strip Row 2

ABCs

HCC

Strip direction

Long-strip module

Silicon sensor:
• Multiple rows of 1280 strips with a 75 𝜇m pitch.

• Long-strip sensor  à 2 rows, strip length ≈ 5 cm.
• Short-strip sensor à 4 rows, strip length ≈ 2.5 cm.

Hybrid:
• Printed circuit board holding the read-out ASICs.

• 10 ABCs: amplify and discriminate signal.
• 1 HCC: interface between ABCs and back-end electronics.

Powerboard:
• ASIC power, monitoring & interlock, HV-switching for sensor biasing.
• Front-end chips require 1.5V, but distribute 11V to modules.

• Use buck converter w/ air-core coil for DC-DC conversion.
• 2 MHz switching à EMI à noise in silicon strips.

• Mitigated by aluminum shield box.

Autonomous Monitor 
And Control ASIC
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ITk Strip Sensor

Silicon sensor:
• n-type Si strips implants on p-type Si bulk à p-n junction.

• Apply -350V reverse bias between implants and aluminum backplane.
• Depletion zone grows as charge carriers removed from bulk.

• Charge particles passing through will ionize Si in depletion zone.
• Electrons drift to n+ strip implant.
• Holes drift to sensor backplane.

• Aluminum bond pads are AC coupled to each strip.
• Pads are wire bonded to ABC chips.

Javier Fernández-Tejero

https://cds.cern.ch/record/2722118?ln=en
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Introduction to cold noise
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Background:
• Early last year, observed high noise channels appearing

when testing modules at cold temperatures.

• Generally reversible by returning to room temp.

• This “cold noise” is now only seen on barrel modules.
• Was seen on earlier versions of endcap modules.

• Eventually decided to pause pre-production to investigate.

• Long campaign of custom builds and imaginative tests.
• Will only highlight the most interesting studies here.

-50C

Noise(-50C) – Noise(+20C)

Cold Noise Intro
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Measuring Noise
Binary Readout:
• ABCs amplify & discriminate signal from strips.

• 1 bit per LHC BX indicating if strip above threshold.
• Tune to balance signal efficiency vs. noise.

Noise metric:
• Scan threshold & measure occupancy à S-curve.

• Error function à derivative is a gaussian.
• Mean à vt50, width à output noise.

• Input noise [ENC] =
output noise [voltage] / CSA gain [voltage / charge]



• Can electrically test up to 4 modules simultaneously.

• Nominal module QC: thermal cycle each module 10× from −35C to +40C (chuck temp).
• Diagnostic stress tests: can reach -50C (and probably even colder).

Thermal Cycling Setup
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Dry air

Coolant

Air T/RH 

Flowmeter

NTCs in chuck

Chiller

LV PS: 
ASICS

HV PS: 
sensor biasing

PC:
DAQ



Early Observations:
• Only appears on the strip rows under the hybrids & PB.
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Cold Noise Observations

AUG 16, 2023
Short-strip module

Strip Row 1

Strip direction

Strip Row 4



Early Observations:
• Only appears on the strip rows under the hybrids & PB.

• Tends to appear in certain regions.
• Correlated with glue under hybrids.

Ian Dyckes 14

Cold Noise Observations

AUG 16, 2023

Short-strip module
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Early Observations:
• Only appears on the strip rows under the hybrids & PB.

• Tends to appear in certain regions.
• Correlated with glue under hybrids.

• Worsens with load on DC-DC converter.
• Can increase load by shunting current on ABCs.

-50C, shunts on

-50C, shunts off

-35C, shunts off

Cold Noise Observations

AUG 16, 2023
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Early Observations:
• Only appears on the strip rows under the hybrids & PB.

• Tends to appear in certain regions.
• Correlated with glue under hybrids.

• Worsens with load on DC-DC converter.
• Can increase load by shunting current on ABCs.

• Noise “freezes-in” during 1st thermal cycle.
• Persists while warming.
• Occasionally have residual “cold” noise at room temp!

+20C +20C

-10C -10C

-50C

1st thermal cycle

Cold Noise Observations

AUG 16, 2023
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+20C +20C

+20C

Bake-out +20C

+20C

+40C

Cold Noise Observations

AUG 16, 2023

Early Observations:
• Only appears on the strip rows under the hybrids & PB.

• Tends to appear in certain regions.
• Correlated with glue under hybrids.

• Worsens with load on DC-DC converter.
• Can increase load by shunting current on ABCs.

• Noise “freezes-in” during 1st thermal cycle.
• Persists while warming.
• Occasionally have residual “cold” noise at room temp!

• But can “bake-out” by going warmer.
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Early Observations:
• Only appears on the strip rows under the hybrids & PB.

• Tends to appear in certain regions.
• Correlated with glue under hybrids.

• Worsens with load on DC-DC converter.
• Can increase load by shunting current on ABCs.

• Noise “freezes-in” during 1st thermal cycle.
• Persists while warming.
• Occasionally have residual “cold” noise at room temp!

• But can “bake-out” by going warmer.

Glue dependence:
• Severity varies greatly among “nearly identical” epoxies.

• Unable to correlate with any info in data sheets…

Cold Noise Observations

AUG 16, 2023



Ian Dyckes

19

Early Observations:
• Only appears on the strip rows under the hybrids & PB.

• Tends to appear in certain regions.
• Correlated with glue under hybrids.

• Worsens with load on DC-DC converter.
• Can increase load by shunting current on ABCs.

• Noise “freezes-in” during 1st thermal cycle.
• Persists while warming.
• Occasionally have residual “cold” noise at room temp!

• But can “bake-out” by going warmer.

Glue dependence:
• Severity varies greatly among “nearly identical” epoxies.

• Unable to correlate with any info in data sheets…

• Thicker glue layers under PB and hybrid(s) can reduce CN. 

• Softer “glues” (Sylgard encapsulant, SE-4445 gel) remove CN.
• Only diagnostic, not suitable for detector.

Cold Noise Observations

AUG 16, 2023

-50C

AA-BOND F112 (“False Blue”)

Nominal glue thickness
Double glue thickness
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Highlighting the most insightful studies
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Bypassed Powerboard (SCIPP)

Motivation:
• Is the source of cold noise on hybrid or powerboard?

• Can factor the two by bypassing the PB for hybrid power.
• Remove low voltage power bonds between PB & hybrids.
• Power hybrids directly with power supply.
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Bypassed Powerboard (SCIPP)

Strip row under HX

Motivation:
• Is the source of cold noise on hybrid or powerboard?

• Can factor the two by bypassing the PB for hybrid power.
• Remove low voltage power bonds between PB & hybrids.
• Power hybrids directly with power supply.

Tests:
1. PB off à no cold noise.
2. PB on, but no load on DC-DCà still no cold noise.
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Bypassed Powerboard (SCIPP)

Strip row under HX
Strip row under HX

Motivation:
• Is the source of cold noise on hybrid or powerboard?

• Can factor the two by bypassing the PB for hybrid power.
• Remove low voltage power bonds between PB & hybrids.
• Power hybrids directly with power supply.

Tests:
1. PB off à no cold noise.
2. PB on, but no load on DC-DCà still no cold noise.
3. PB on with resistive load on DC-DC emulating hybrids à cold noise!
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Bypassed Powerboard (SCIPP)

Motivation:
• Is the source of cold noise on hybrid or powerboard?

• Can factor the two by bypassing the PB for hybrid power.
• Remove low voltage power bonds between PB & hybrids.
• Power hybrids directly with power supply.

Tests:
1. PB off à no cold noise.
2. PB on, but no load on DC-DCà still no cold noise.
3. PB on with resistive load on DC-DC emulating hybrids à cold noise!

• Even appears near HCC, far from PB!

Strip row under HX
Strip row under HX
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Motivation:
• DC-DC on powerboard switches at 2 MHz à measurable EMI.

• Mitigated by shield box.

• PB appears to be (at least partially) responsible for CN.
• Perhaps CN is somehow related to the DC-DC switching?

Setup:
• Place a magnetic field probe over PB shield boxà 2 MHz signal.

• Use magnetic field to trigger module readout.
• Scan over the trigger delay

à noise occupancy vs DC-DC phase.

• Perform on warm and cold modules.

DCDC-Synchronous Triggering (UBC, LBL, RAL)

Magnetic field
Trigger to module
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DCDC-Synchronous Triggering

2 MHz à 500 ns

Warm

H
X under

H
Y under

HY away

HX away

Warm Results:
• Showing occupancy of each channel vs trigger delay [ns].

• Focusing on row of strips under PB & X-hybrid.

• As expected, observe:
• Higher noise on strips near DC-DC. 
• Higher noise when in phase with DC-DC.

à Horizontal bars spaced by 500ns.
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Warm Results:
• Showing occupancy of each channel vs trigger delay [ns].

• Focusing on row of strips under PB & X-hybrid.

• As expected, observe:
• Higher noise on strips near DC-DC. 
• Higher noise when in phase with DC-DC.

à Horizontal bars spaced by 500ns.

Cold Results:
• In addition to the expected effects, see diagonal bands.

• Coincide with channels exhibiting cold noise!

• Looks like a wave of noise is traveling across sensor!

• Is something to vibrating on the powerboard?
• At DC-DC switching frequency (2 MHz)?

• Is a mechanical wave coupling into sensor & traveling?
• If so, what are its properties?

DCDC-Synchronous Triggering

Cole Helling

H
X under

H
Y under

HY away

HX away

Cold
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Lamb Waves

Si plate @ +20C
[100] direction
[110] direction

https://asa.scitation.org/doi/pdf/10.1121/1.3167277
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H
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m
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𝑆!

𝐴!

Brief Introduction:
• Sinusoidal solutions to wave equation in flat plates.

• Family of symmetric (𝑆&) and anti-symmetric (𝐴&) solutions.

• Only 𝑆' and 𝐴' at low frequencies.
• Higher order modes have cut-off frequencies ≳ 10MHz.
• 𝑆' and 𝐴' most important when 𝜆 ≫ plate thickness.

• Suspect we are seeing 𝐴'.
• 𝐴' (flexural mode) à particles move perpendicular to sensor plane.
• 𝑆' (extensional mode) à particles move parallel to plane.

https://asa.scitation.org/doi/pdf/10.1121/1.3167277
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Lamb Waves

Si plate @ +20C

https://asa.scitation.org/doi/pdf/10.1121/1.5021256

𝑆!

𝐴!

Brief Introduction:
• Sinusoidal solutions to wave equation in flat plates.

• Family of symmetric (𝑆&) and anti-symmetric (𝐴&) solutions.

• Only 𝑆' and 𝐴' at low frequencies.
• Higher order modes have cut-off frequencies ≳ 10MHz.
• 𝑆' and 𝐴' most important when 𝜆 ≫ plate thickness.

• Suspect we are seeing 𝐴'.
• 𝐴' (flexural mode) à particles move perpendicular to sensor plane.
• 𝑆' (extensional mode) à particles move parallel to plane.

https://asa.scitation.org/doi/pdf/10.1121/1.5021256


Brief Introduction:
• Sinusoidal solutions to wave equation in flat plates.

• Family of symmetric (𝑆&) and anti-symmetric (𝐴&) solutions.

• Only 𝑆' and 𝐴' at low frequencies.
• Higher order modes have cut-off frequencies ≳ 10MHz.
• 𝑆' and 𝐴' most important when 𝜆 ≫ plate thickness.

• Suspect we are seeing 𝐴'.
• 𝐴' (flexural mode) à particles move perpendicular to sensor plane.
• 𝑆' (extensional mode) à particles move parallel to plane.

Plugging in some numbers:
• 𝑓()() = 2MHz, thickness = 0.3 mmà 𝑣 = 2.7 *+

,
, 𝜆 = 18 strips.

• Does this agree with our data?
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Lamb Waves

Si plate @ +20C

𝑆!

𝐴!

https://asa.scitation.org/doi/pdf/10.1121/1.5021256

2 MHz × 0.3 mm

𝑣 = 2.7 km/s
𝜆 = 1.33 mm
≈ 18 strips

NB: dispersion plots here are for simple silicon wafers at +20C.
Ian Dyckes

https://asa.scitation.org/doi/pdf/10.1121/1.5021256


DCDC-Synchronous Delay Scan (Revisited)
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• Calculated power spectrum for every step in a delay scan (step size = 1 LHC bunch crossing = 25 ns).

• Suspect something is vibrating at the DC-DC switching frequency, 𝑓()() ≈ 2 MHz.
• Dispersion plot (at +20C) à 𝑣 ≈ 2.7 km/s, 𝜆 ≈ 18 strips.
• See a peak near here in the spectrum!

• Maybe vibrations really are the source of cold noise.

De
la

y 
[B

X]

-21C

~2 MHz wave from DC-DC?

Channel Occupancy vs Delay

Strip

𝑇!"!" = 20 BX

-21C

Hits per 10k Triggers Power Spectrum
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Vibrating Transducer Studies:
Building confidence in the vibration theory
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2047-H2KLPY11000600-ND

Intentionally Vibrating Modules 

Gel
Shield Box

Transducer

Motivation:
• Suspect powerboard is producing vibrations.

• Somehow mechanical waves à electrical noise.

• Suspect module is vibrating at all temperatures.
• Then something changes at cold temperatures (stress?) 

à cold noise turn-on.

• Maybe we can induce “cold” noise at room temperature…

Test:
• Placed transducer on PB shield box w/ coupling gel.

• No conductive path from transducer to shield box.

• Drove transducer at resonant frequency (1 MHz) with AFG.

• Performed electrical characterization at +20C.

https://www.digikey.com/en/products/detail/unictron-technologies-corporation/H2KLPY11000600/9921487


Ian Dyckes AUG 16, 2023 34

Motivation:
• Suspect powerboard is producing vibrations.

• Somehow mechanical waves à electrical noise.

• Suspect module is vibrating at all temperatures.
• Then something changes at cold temperatures (stress?) 

à cold noise turn-on.

• Maybe we can induce “cold” noise at room temperature…

Test:
• Placed transducer on PB shield box w/ coupling gel.

• No conductive path from transducer to shield box.

• Drove transducer at resonant frequency (1 MHz) with AFG.

• Performed electrical characterization at +20C.

Results:
• Noise pattern @ +20C w/ transducer looks like 

CN pattern @ -35C (w/out transducer), but worse.

Intentionally Vibrating Modules 
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Transducer-Synchronous Triggering
Next step:
• Instead of triggering randomly (previous slide), synch trigger with transducer.

• Synchronized 2 waveform generators.
• Top AFG drives transducer at 3 different frequencies (resonant at 1 MHz).
• Bottom AFG sends trigger to module at ~80 kHz.

• Scanned trigger delay à noise occupancy vs. transducer phase.

Amp for transducer

AFG driving transducer

1 MHz sync signal to bottom AFG
83 kHz trigger to module

Synched AFG 
triggering readout



Transducer-Synchronous Triggering
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HX, 1.540 MHz

HX, 1.057 MHz

HX, 0.453 MHz

HY, 1.540 MHz

HY, 1.057 MHz

HY, 0.453 MHz

x-axis: strip number
y-axis:1 BCO à 25 ns
z-axis: noise occupancy

Showing only strip rows 
covered by hybrids and PB.
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HX, 1.540 MHz HY, 1.540 MHz

𝑨𝟎 wave properties:
• 𝑣. ≈

!
%𝑣/~ 𝑓 for low 𝑓 𝜆 ≫ plate thickness .

• Can we see 𝑣~ 𝑓 dependence?

Transducer-Synchronous Triggering
x-axis: strip number
y-axis:1 BCO à 25 ns
z-axis: noise occupancy

Showing only strip rows 
covered by hybrids and PB.



HY HCC Spectrum (Channels 0-200) @ -35C
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𝑓012&3 = 0.453 MHz 𝑓012&3 = 1.057 MHz 𝑓012&3 = 1.540 MHz

𝑓012&3? 𝑓012&3? 𝑓012&3?

2.13 𝑓

𝑣
[𝑘
𝑚
/𝑠
]

𝑓 [𝑀𝐻𝑧]

• For calculating power spectrum, zoomed in on HCC region on the Y-hybrid.
• Cleanest signal, especially at higher frequency.

• Can guess which peak corresponds to a wave traveling at 𝑓012&3 à can calculate 𝑣(𝑓) = 𝜆(𝑓)×𝑓.
• Only three points, but roughly follows expected 𝑣~ 𝑓 behavior for 𝐴' wave.
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Vibration Summary
Summary:
• Fairly confident something is vibrating on the powerboard at 𝑓()() ≈ 2 MHz.

• Likely vibrating at all temperatures.
• But something changes when cold (stress?) à cold noise turn-on.

• “Cold” noise pattern reproduced at room temp by vibrating module with transducer.

• Mechanical wave couples into sensor & travels à noise on strips far from PB.
• Velocity and wavelength consistent with 𝐴' Lamb wave.

Questions:
• What component is vibrating?

• How do mechanical waves produce electrical noise?

@ +20C w/ transducer
@ -35C no transducer



The Powerboard: A Closer Look

Ian Dyckes AUG 16, 2023 40

Voltage Stepdown:
• Front-end ASICs need 1.5V.

• But distribute 11V to modules & use DC-DC conversion.
• Reduces ohmic losses in cables & traces.

• Use a buck converter (bPOL) w/ air-core coil on powerboard.
• More efficient than a linear regulator à less heat.
• But 2 MHz switching à EM noise (hence shield box).

AMAC

HV switch Buck converter



The Powerboard: A Closer Look

Ian Dyckes AUG 16, 2023 41

Voltage Stepdown:
• Front-end ASICs need 1.5V.

• But distribute 11V to modules & use DC-DC conversion.
• Reduces ohmic losses in cables & traces.

• Use a buck converter (bPOL) w/ air-core coil on powerboard.
• More efficient than a linear regulator à less heat.
• But 2 MHz switching à EM noise (hence shield box).

Filtering:
• Output of buck converter has some ripple.

• Smooth with pi filters on both 11V & 1.5V lines.
• Caps are piezoelectric!  Are they vibrating?



Vibrometer Measurements (RAL)
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• Vibrations confirmed using laser doppler vibrometer at RAL.
• See 𝒪(10 pm) - 𝒪(1 nm) vibrations, depending on location on module.

• Caps on pi filters are driving vibrations, with 11V caps having ~10x larger amplitude compared to 1.5V caps (higher dV/dt).

• Vibrations are coupling into sensor.
• Amplitude is fairly independent of temperature, but the propagation changes (standing waves when cold).

• We’re not alone – also see vibrations on DC-DC converter boards currently installed in CMS.
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Mitigations Strategies



Strategy #1: Picking the right glue & glue thickness
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False Blue SS modules (various glue thicknesses)

Observations:
• CN severity varies greatly with glue type.

• Generally, thicker glue layers reduce CN.

Evaluated epoxies:
• Polaris PF-7006 2-part epoxy

• Previous baseline, no longer available.
• Discovered CN with this glue.

• Loctite Eccobond F112 (“True Blue”)
• Previous backup, new baseline.
• Better CN performance than Polaris.

• AA-BOND F112 (“False Blue”)
• Should be very similar to True Blue.
• But observe much worse CN.

-50C



Strategy #1: Picking the right glue & glue thickness
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True Blue LS modules (nominal glue thickness)

False Blue SS modules (various glue thicknesses)

Observations:
• CN severity varies greatly with glue type.

• Generally, thicker glue layers reduce CN.

Evaluated epoxies:
• Polaris PF-7006 2-part epoxy

• Previous baseline, no longer available.
• Discovered CN with this glue.

• Loctite Eccobond F112 (“True Blue”)
• Previous backup, new baseline.
• Better CN performance than Polaris.

• AA-BOND F112 (“False Blue”)
• Should be very similar to True Blue.
• But observe much worse CN.

Mitigation plan:
• True blue with the nominal thickness (120 𝜇𝑚) is good enough for LS modules.

• Can double the glue thickness for SS modules.

-50C

-50C



Strategy #2: Modifying the powerboard
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Swapping components:
• Attempts to solve CN by modifying components on PB have failed.

• Caps on stilts (smaller vibrations).
• 0805 à 0603 (different frequency response).
• Removed caps completely. 
• And more…

• Using tantalum capacitors helps (not piezoelectric).
• But not radiation hard.To bottom AFG

Murata KRM series 

https://www.murata.com/en-us/products/capacitor/ceramiccapacitor/overview/lineup/smd/krm


Strategy #2: Modifying the powerboard
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Swapping components:
• Attempts to solve CN by modifying components on PB have failed.

• Caps on stilts (smaller vibrations).
• 0805 à 0603 (different frequency response).
• Removed caps completely. 
• And more…

• Using tantalum capacitors helps (not piezoelectric).
• But not radiation hard.

Changing the substrate:
• Recent endcap modules do not have CN.

• Inspired some special builds:
• Barrel PB on endcap module à CN.
• Endcap PB on barrel module à no CN.

• Endcap has different powerboard flex PCB manufacturer (Würth).
• Thinner & more flexible than barrel PBs.
• Different stack-up & vias (barrel = through hole, endcap = staggered microvias).
• Acrylic instead of epoxy. 

• Ordered PB flexes from Würth using barrel layout but endcap process (so stacked microvias).

Barrel PB on endcap module Endcap PB on barrel module 



Strategy #2: Modifying the powerboard

Ian Dyckes AUG 16, 2023 48

C4 & C5 on nominal flex
C4 & C5 on Würth flex

+20CBarrel PBs in endcap process:
• Vibrometer tests of standalone PBs were encouraging.

• Caps vibrate much less than on nominal barrel PB flexes.
• Although the difference is small at 2 MHz…

Capacitor Displacement Amplitude vs Frequency

Operation 
frequency



Strategy #2: Modifying the powerboard
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Barrel PBs in endcap process:
• Vibrometer tests of standalone PBs were encouraging.

• Caps vibrate much less than on nominal barrel PB flexes.
• Although the difference is small at 2 MHz…

• But severe CN observed on modules with Würth PB.
• Will try again with staggered microvias like endcap…

+20C

HX @ -40C

HY @ -40C

RAL
RAL

Module with new Würth barrel PB

Operation 
frequency

C4 & C5 on nominal flex
C4 & C5 on Würth flex

Capacitor Displacement Amplitude vs Frequency



Strategy #3: Filling in the gaps
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Observation:
• CN channels are correlated with glue dots & dashes on hybrid back-end.

Speculation:
• Maybe PB & hybrid glue form resonant cavity à waves reflecting back 

and forth.

• Perhaps glue is undergoing some transition that affects reflectivity 
à CN turn-on.

Possible fix:
• Fill the gaps between hybrids and PB with the same glue to reduce 

reflections.
• Important to use glue with same “index of refraction”.

• Waves must then travel farther before reflecting.



Strategy #3: Filling in the gaps
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Procedure:
• Filled in gaps between hybrids and PB on existing module.

• Originally built with worst glue (False Blue) à severe cold noise.
• Filled gaps with more False Blue.

Results:
• Almost completely removed the cold noise!

• Repeated w/ more modules and other glues à similar improvements!
• Results hold up over 50+ (extra stressful) thermal cycles!

• Need to develop a production friendly process & better understand the stress.
• Filling gaps with a glue syringe is too tedious.

Before
After

Channel
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Mechanical Wave à Electrical Signal Mechanism



Javier Fernández-Tejero
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Voltage Source
Speculation:
• Have evidence suggesting cold “noise” is not Gaussian noise (see backup).

• Appears vibrations produce AC voltage between strips and hybrid.
• Causes effective discrimination threshold to oscillate.

• How is this AC voltage produced from mechanical waves?

• SiO2 and Si3N4 in passivation & dielectric known to be piezoelectric...
• Module built using old sensor w/ less passivation à less CN.
• CN appears to be independent of bias voltage. 

https://cds.cern.ch/record/2722118?ln=en


Javier Fernández-Tejero
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Voltage Source
Speculation:
• Have evidence suggesting cold “noise” is not Gaussian noise (see backup).

• Appears vibrations produce AC voltage between strips and hybrid.
• Causes effective discrimination threshold to oscillate.

• How is this AC voltage produced from mechanical waves?

• SiO2 and Si3N4 in passivation & dielectric known to be piezoelectric...
• Module built using old sensor w/ less passivation à less CN.
• CN appears to be independent of bias voltage. 

Test for (inverse) piezoelectricity:
1. Vibrate a sensor and look for signs of piezoelectricity.

• Drive a piezoelectric actuator to vibrate a sensor.
• Measure voltage between AC pad & implant.
• Hard to control electrical noise from actuator…

2. Do the opposite.
• Apply AC voltage between AC pad & implant.
• Look for vibrations using a laser vibrometer.
• Not clear if vibration amplitudes will be large enough…

https://cds.cern.ch/record/2722118?ln=en
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Concluding Thoughts
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Vibrations:
• PB is always vibrating, at all temperatures.

• Waves reflecting off glue-sensor interfaces.
• Resonant cavities forming between hybrid and PB glue lines?

Phase transition:
• When cold, module undergoes phase transition.

• Related to stress from CTE mismatch?

• Somehow affects how waves propagate and produce noise?
• Mechanical impedance of glue changes?

Mechanical waves à electrical signal:
• Vibrations produce time-dependent voltage.

• Possibly between strip implants and ASIC ground.
• Piezoelectricity in AC coupling dielectric? Or in the glue?

• Effective discrimination threshold oscillates in phase with DC-DC converter.
• Looks like gaussian noise when triggering asynchronously.

Putting It All Together (Speculative)

AUG 16, 2023
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Cold noise
• Early last year, observed very noisy channels when testing modules at cold temperatures.

• Decided to pause pre-production to investigate.

• Capacitors on the powerboard are vibrating at the DC-DC converter frequency (2 MHz).
• Produces mechanical waves that travel through the sensor.
• Confirmed by vibrometer measurements.

• Mechanical vibrations appear to be producing a voltage à effective discrimination threshold oscillates.
• Exact mechanism not yet understood.

Mitigation strategies:
1. Using a particular glue (True Blue) & possibly doubling its thickness.

• Do not understand why this helps.

2. Redesigning the powerboard flex to more closely match the endcap.
• Early results are discouraging, but we’re trying new layout with staggered microvias.

3. Filling in the gaps between the hybrids & PB with more glue.
• Very encouraging results, but need to develop a production-friendly process

Summary

AUG 16, 2023
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Backup
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Threshold scans:
• ATLAS Binary Chips amplify and discriminate strip signal.

• Tunable threshold.
• Balancing signal efficiency vs. noise rejection.

• Measure strip occupancy vs threshold à S-curve.
• Mean: 50% occ. threshold (vt50).
• Width: output noise.

Simultaneous trigger delay & threshold scan:
• Vibrate module with 1 MHz transducer.

• Trigger module readout synchronous with transducer
• Scan over trigger delay & discrimination threshold.

• Produce a vt50 & noise measurement for each trigger delay step.

Simultaneous Delay & Threshold Scan

Derivative
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• Observe more variation in the 50% occupancy threshold (vt50) than the output noise (𝜎).
• S-curves are shifting left and right with transducer.

• As if the “effective” threshold is shifting up and down in phase with the transducer.
• Not some Gaussian noise source with a varying width.

• Time-dependent voltage difference between implant and hybrid/ASIC ground?

50% Occupancy Threshold (vt50) Output Noise (𝝈)
Simultaneous Delay & Threshold Scan
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Mechanical Wave à Voltage Mechanism

Overview:
• Magnetic triggering & transducer tests à CN is the result of vibrations.

• Fourier analysis à consistent with Lamb waves.
• Vibrations confirmed & studied with vibrometer.

• Not Gaussian noise, but instead a DCDC-synchronous voltage à oscillating vt50.

• Do not understand how vibrations produce this voltage.
• Piezoelectricity in the glue?  
• Piezoelectricity in the passivation/dielectric?
• Electrostriction in the Silicon bulk?

Speculation:
• SiO2 and Si3N4 is passivation & dielectric known to be piezoelectric...

• Expect to be amorphous…

• Personally lean towards piezoelectricity in the passivation/dielectric.
• CN appears to be independent of bias voltage.
• Module built using old sensor w/ less passivation à less CN.

Javier Fernández-Tejero

https://cds.cern.ch/record/2722118?ln=en
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sensor

Inverse piezoelectricity in dielectric:
• Vibrate the coupling capacitor test structure on a halfmoon.

• Square metal pad & implant separated by dielectric.
• Simpler than sensor.
• Size (~0.7 mm)2≪ 𝜆45 of mechanical wave.

• Bond AC (10) & DC (11) pads to differential pair pads on frame.
• Frame à mini displayPort à spy board à diff probe à amp à scope.

• Look for periodic signal with 𝑓 = 𝑓012&3.

Test Idea Test Idea
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Test Idea Setup

• Halfmoon held to test frame by spacer w/ suction cups.

• Layer of rigid G10 between halfmoon & test frame pad.
• Electrically isolating halfmoon backplane.

• Driving 152 kHz piezo with AFG at 10 Vpp (~0.5 𝜇𝑚).
• 𝜆45 ≫ coupling cap test structure à mechanical 

wave amplitude is ~constant over structure.
• Low frequency à less radiative pickup.

• AC & DC pads bonded to differential pair pads on frame.

• Mini DP à spy board à diff. probe à amp à scope.

• Grounding & shielding important for controlling EMI. Spy board

Probe

AFG

Scope

Grounding

To scope ground

Amp

https://www.digikey.com/en/products/detail/kemet/AE0203D08H09DF/9744541
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Test Idea Setup

• Halfmoon held to test frame by spacer w/ suction cups.

• Layer of rigid G10 between halfmoon & test frame pad.
• Electrically isolating halfmoon backplane.

• Driving 152 kHz piezo with AFG at 10 Vpp (~0.5 𝜇𝑚).
• 𝜆45 ≫ coupling cap test structure à mechanical 

wave amplitude is ~constant over structure.
• Low frequency à less radiative pickup.

• AC & DC pads bonded to differential pair pads on frame.

• Mini DP à spy board à diff. probe à amp à scope.

• Grounding & shielding important for controlling EMI.

Piezo actuator

Halfmoon

Cu tape in contact 
with backplane

G10

https://www.digikey.com/en/products/detail/kemet/AE0203D08H09DF/9744541
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Test Idea Backplane Shorted to Implant

AC pad
Dielectric
Implant

Si Bulk

Diff. probe Scope

Backplane

Piezoelectricity 
in dielectic?

Unbiased Si à built-in depletion region à
parallel plate cap with small 𝑑 à large 𝐶#$%&.

Sync from AFG driving piezo actuator

FFT

Diff. signal from AC & DC pad

• Shorting aluminum backplane to the n+ implant.

• Triggering on sync signal from AFG that’s driving the piezo.

• Performing FFT (centered at 152 kHz).

• Differential signal is DC coupled into scope, averaging.
• See signal matching piezo frequency!

• Could be EMI… Still investigating…

• Maybe easier to turn this process around:
• Produce an AC voltage across the AC pad & implant à mechanical deformation?
• Look for vibrations with laser vibrometer.
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ITk Upgrade
ITk Upgrade:
• ATLAS is replacing its inner detector for the High-Luminosity LHC.

• More interactions per bunch crossing ( 𝜇 ≈ 50à 200).
• Higher trigger rate (100 kHz à 1 MHz).
• Worse radiation damage (up to 2×10!" 𝑛#$/cm%).

• Installing new, all silicon Inner Tracker (ITk).
• Pixels modules for inner layers, strip modules for outer layers.
• LBNL heavily involved in pixels & strips, plus global mechanics & integration.

Run 3

Run 2, per 1 fb-1 HL-LHC, per 4000 fb-1
𝑡 ̅𝑡 event at 𝜇 = 200
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ITk Strip Detector
Strip detector:
• Barrel composed of rectangular staves.

• Assembled in 4 concentric cylinders.
• 14 identical modules on each side.

• Endcaps composed of petals.
• 32 petals form a disk, 6 disks per endcap.
• 6 different module geometries.

• Staves & petals constructed from carbon fiber.
• Each side covered with a “bus tape”.

• TTC/DCS/data transmission.
• Power for ASICs & HV for sensor biasing.
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ABCs

HCC
Threshold Scans

Binary Readout:
• ABCs amplify & discriminate signal from strips.

• Discriminated signal sampled once per 25ns BX
à 1 bit indicating if above threshold.

• Discriminator threshold can be tuned.
• Balancing signal efficiency vs. noise.
• Spec: >99% efficiency, <0.1% noise occupancy.

S-curves:
• Scan over threshold, triggering 𝑁 times at each step.

• With or without charge injection.

• Plot occupancy vs. threshold à S-curve (error function).
• Derivative is a gaussian.
• Mean à vt50, width à output noise.



Response Curve:
• Perform threshold scans while injecting charge.

• Repeat for 10 different charges.

• For each charge injected, get s-curve.
• Mean à vt50.
• Width à output noise.

• Plot vt50 vs. injected charge à response curve.
• Slope à gain.

• Input noise = output noise / gain.
• Most useful metric.
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slope

Divide by gain

vt50 for various charges
(Mean of Gaussians)

Output noise for various charges
(Width of Gaussian)

Response Curves, Gain, and Input Noise
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Input Noise

Response Curve:
• Perform threshold scans while injecting charge.

• Repeat for 10 different charges.

• For each charge injected, get s-curve.
• Mean à vt50.
• Width à output noise.

• Plot vt50 vs. injected charge à response curve.
• Slope à gain.

• Input noise = output noise / gain.
• Most useful metric.
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Required Performance
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The Powerboard: A Closer Look
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Voltage Stepdown:
• ABCs and HCC need 1.5V.

• But distribute 11V to modules & use DC-DC conversion.
• Reduce ohmic losses.

• Use a buck converter (bPOL) & air-core coil on powerboard.
• More efficient than a linear regulator à less heat.
• But 2 MHz switching à EM noise (hence shield box).

Powering modules on stave (from Peter Phillips)



Ian Dyckes 74AUG 16, 2023

Moveable PB

Jacob Johnson, SCIPP

PB on Stream 1 (not hybrid segment)
à no cold noise anywhere!

• SCIPP built module with moveable PB.
• No glue, shunts hardwired on, hybrid powered by PS, resistive load on PB emulating hybrids.

• PB in usual location on same strip segment as hybrid (stream 0) à cold noise.
• PB on opposite strip segment (stream 1) à no cold noise.
• Maybe hybrid and PB have to be on same segment?

• PB vibrates segment à wave travels to hybrid glue à piezo effect à voltage between strips and hybrid ground plane?

PB on Stream 0 (usual location)
à cold noise on Stream 0!

DCDC noise, not CN

https://indico.cern.ch/event/1245419/contributions/5232774/subcontributions/410245/attachments/2582739/4455056/SCIPP-PPB_LS-004%20Update.pdf
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Geography

• Does pattern point to specific features?

• Point source near HCC?

• What about near DCDC?
• See “W”s, not ”V”s…

Toy model:
• Point source.
• Undamped sine waves traveling perpendicular to strips at 2.2 km/s.
• Plotting amplitude.

1.540 MHz 1.540/2 MHz + 1.540/2 MHz
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G10 Cover

Creating an air gap:
• Placed transducer on G10 module cover, centered over shield box.

• Not physically touching module (4 mm air + 2 mm G10) à helps separate out EM noise from transducer.

• Noise pattern at -35C with transducer on G10 bridge is consistent with usual CN.
• Not much EM noise on the under streams (plenty on away streams).
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G10 Cover

Creating an air gap:
• Placed transducer on G10 module cover, centered over shield box.

• Not physically touching module (4 mm air + 2 mm G10) à helps separate out EM noise from transducer.

• See lots of EM noise on away streams when in phase with transducer.
• Not much on the under streams.



HY Spectrum (All Channels) @ -35C
𝑓012&3 = 0.453 MHz
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𝑓012&3 = 1.057 MHz 𝑓012&3 = 1.540 MHz

• Overlaying power spectrum at all 80 latency steps (GIFs showing each latency step separately in backup).

• Guessing which peak corresponds to a wave traveling at 𝑓012&3 à can calculate 𝑣(𝑓) = 𝜆(𝑓)×𝑓.

• Other peaks?  Flexural waves traveling at other frequencies (harmonics of 𝑓012&3)?  Artifact of complex sensor/module structure?
• Recall, speed is frequency dependent.  So 2𝑓 ⇏ 𝜆/2.

𝑓012&3? 𝑓012&3? 𝑓012&3?



HY Spectrum (All Channels) @ -35C

• Overlaying power spectrum at all latency steps (GIFs showing each latency step separately in backup).

• Red dashed line marks guess peak I think corresponds to the transducer frequency.
• Can read off corresponding velocity from top axis.

0.453 MHz 1.540 MHz1.057 MHz
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𝑣 [𝑘𝑚/𝑠]

𝑓 [𝑀𝐻𝑧]

2.13 𝑓



HX Spectrum (All Channels) @ -35C

• Cleanest signal at 1.540 MHz à peak agrees well with Y hybrid.

• Less convincing at lower 𝑓012&3, but less clean signal.
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𝑓012&3 = 0.453 MHz 𝑓012&3 = 1.057 MHz 𝑓012&3 = 1.540 MHz



HX HCC Spectrum (Channels 1050-1280) @ -35C
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• Now focusing on HCC of HX, using same 𝑣 𝑓 as HY (“fitted” to HY power spectrum).

• 1.540 MHz spectrum matches well, but 0.453 MHz and 1.057 MHz do not.
• Lower frequencies have less clean signal in latency scan and fewer wavelengths for the DFT.
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𝑓012&3 = 0.453 MHz 𝑓012&3 = 1.057 MHz 𝑓012&3 = 1.540 MHz
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Phase and Group Velocity of Lamb Waves in Aluminum Plate

https://www.researchgate.net/publication/264031140_Damage_localization_in_plate-like_structure_using_built-in_PZT_sensor_network

𝑨𝟎 properties:
• 𝑣. ≈

!
%𝑣/~ 𝑓 for low 𝑓 𝜆 ≪ 𝑡 .

• As 𝜆 approaches plate thickness, 𝑣. → Rayleigh speed.
• Rayleigh speed close to shear (AKA transverse) speed.

• 𝑣/ hits max just above 𝑣6 when 𝜆 ≈ plate thickness 
• Then decreases to Rayleigh speed.

https://www.researchgate.net/publication/264031140_Damage_localization_in_plate-like_structure_using_built-in_PZT_sensor_network
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Group velocity and characteristic wave curves of Lamb waves
in composites: Modeling and experiments

https://www.sciencedirect.com/science/article/pii/S0266353806003630

https://www.sciencedirect.com/science/article/pii/S0266353806003630
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