
Busy Logic for BRAM

-- Hongj iangCai

Wishbone In terconnect Archi tecture

wishbone bustrigger

Trigger
Logic

Wishbone
Tx Core

Wishbone
Rx Core

FPGA(YARR_FW)

FE sensor
chip

Wishbone
Rx Bridge

BRAM

Wishbone to
PCIe core

DMA wishbone PCIe IP

HOST
YARR_SW

PCIe

Control
Registers SPI

AXI-Stream
FIFO

250MHz
AXI-Steam

Clock
Domain

160MHz Wishbone Clock Domain

Why busy logic?

● Due to delay on allocating memory during read request, the read from host is slower
than write from chips. This cause the difference between read and write pointers in
BRAM on FPGA to accumulate.

● Since BRAM is a circulating memory, when difference between read and write pointers
exceed its capabil i ty, an overwrite can occur and cause transmission error. (This can
easily happen when more than 7 chips are connected in current system.)

● Before we fix this read/write speed issue with new read request structure, we need busy
logic to prevent BRAM from overwrit ing.

How is busy logic achieved?

● When write pointer exceed read pointer by >90% of BRAM space, busy signal is set
high and send to wb_tx_core. When busy, frequency count in tr igger_unit of wb_tx_core
wil l freeze so FPGA stop sending tr igger to chips.

● Then, after host read enough data out of BRAM (write pointer exceed read pointer by
<50% of BRAM space), the busy signal is set low and the FPGA start to send triggers to
chips again.

Freeze freq_cnt

wb_tx_core/trigger_unit

busy = 1
write

pointer

read
pointer

>90%

BRAM
Defreeze freq_cnt

wb_tx_core/trigger_unit

busy = 0
write

pointer

read
pointer

<50%

BRAM

Wishbone wi th busy log ic

wishbone bustrigger

Trigger
Logic

Wishbone
Tx Core

Wishbone
Rx Core

FPGA(YARR_FW)

FE sensor
chip

Wishbone
Rx Bridge

BRAM

Wishbone to
PCIe core

DMA wishbone PCIe IP

HOST
YARR_SW

PCIe

Control
Registers SPI

AXI-Stream
FIFO

250MHz
AXI-Steam

Clock
Domain

160MHz Wishbone Clock Domain

bram_busy

Diff iculty in implementat ion

● We don’t actually have registers storing the pointers. Both read and write pointers are
kinda virtual in the system. => Need to retrieve these information from the system.

Solut ion #1
● The BRAM is dual-port. One connected to Rx Bridge mainly for write from the chips.

Another connected to Wishbone_to_PCIe core mainly for read from the host.

● We can count the read/write acknowledgements and use the difference as indicator of
space used in BRAM.

● Issues:
● Some software appl icat ion does read BRAM but not actual ly move the pointer.

=> Counters need soft reset af ter execut ing appl icat ions.
l The read from host has some over-read mechanism to al ign the memory space.

=> Cause addit ional read acknowledgements => accumulates and di fference between
acknowledgement counters becomes much smaller than di fferences between pointers.

Solut ion #2
● The BRAM is dual-port. One connected to Rx Bridge mainly for write from the chips.

Another connected to Wishbone_to_PCIe core mainly for read from the host.

● Record access address in different ports. Use the difference between address as
indicator of space used.

● Pros: No more acknowledgement accumulat ion issue from over-read mechanism because
over-read mechanism reset the read address after done.

● Cons: Need to deal with more edge cases.

Leaving LBNL. . .

● Leaving on Aug, 30th

