'7‘ U.S. DEPARTMENT OF
3l
2/ENERGY

rrrrrrrr
/\l ﬂ Office of Science

Shieldbox Number ML

Samantha Kelly

(under direction of Timon Heim and Zhicai Zhang)

Objective 1: Shieldbox #

Shieldbox Number ML | BERKELEY LAB

3

N B~ B

0

1a: Cropping the shieldbox

* Input image taken during the visual inspection stage of the Powerboard Quality Control
Procedure

« Goal of algorithm is to identify shieldbox top-left and bottom-right corners using fiducials
— Crops image using location of corners

* Good crop should eliminate all other text and clearly include all 7 shieldbox numbers

»

One of the five fiducials on a powerboard A discolored fiducial

Shieldbox Number ML | BERKELEY LAB

1a: Cropping the shieldbox

Opening the input image and template

* Open the image using cv2.imread

Make the image black and white using cv2.IMREAD GRAYSCALE
Crop the image to the pixel range (1000:3000, 0:6000)

Open the template using cv2.imread

Make the template black and white using cv2.IMREAD GRAYSCALE

Shieldbox Number ML | BERKELEY LAB

1a: Cropping the shieldbox

Locating fiducials
* Using eval(‘'cv2.TM_CCOR_NORMED’) as method for template matching

* Check how close fiducial template is to actual fiducials using cv2.matchTemplate

* Record pixel coordinates of regions matching the template
— Arbitrary threshold of “matching” set high enough to remove false fiducials, but low enough
to account for variation
Zm’,y’(T($’$ y’)) I(IE + :LJ, y * y’))
\/21',‘_{;’ T(J’,", y')Q ’ Zz’,y' I(:L' + .'13', y+ y!)Z

R(.’E,y) =

with mask:
ZI':@I'(T(Ili y’) : I(CE T :L",y —+ y’) 5 M(l",y')2)
\/Zﬂ’y’ (T(="y) - M(a:’,y’))z ’ Z:‘,y' (I(z+=',y+ ') M(z, y'))2

R(I, y) =

Template matching operation for TM_CCOR_NORMED

Shieldbox Number ML | BERKELEY LAB

1a: Cropping the shieldbox

Determine pair of fiducial

» Use the coordinates of the first two fiducials stored
* Find the distance between the x- and y-coordinates of the fiducials respectively

 Find the ratio between the x- and y-coordinates of each fiducial, and the y-coordinates of both
fiducials

 Using these values, establish parameters to determine which fiducials are stored
— 10 cases (1-2, 1-3, 1-4, 1-5, 2-3, 2-4, 2-5, 3-4, 3-5, 4-5)

e el
R12 R11

Shieldbox Number ML | BERKELEY LAB

70
71
/2
73
74
F)
76
77
78
79
80
81
82
83
84

1a: Cropping the shieldbox

Sort and remove duplicate fiducials

priorpt = (©,0) #initiate as upperleft corner of image
for pt in zip(*loc[::-1]): #for every located fiducial
if 600 < pt[@] < 2000: #if it's in the range of the shieldbox (where there should be no fiducials),
continue #skip
elif pt[@] > 5500: #if it's way to the right of the far-right fiducial,
continue #skip
elif abs(priorpt[@] - pt[@]) > 100: #if the lLocated fiducial 1is far enough away from the prior pt to not be the same one
overlap = © #initiate variable
for i in range(len(appxloc)): #for all potential fiducials
if abs(pt[@] - appxloc[i][@]) < 50: #if the current pt and the iterated pt in the list are close enough
overlap += 1 #increase variable
if overlap == @: #if the current pt doesn't already exists in the list i.e. is far enough from preexisting pts
appxloc.append(pt) #add it to the list
priorpt = pt #update the current pt to prior pt
appxloc.sort(key=lambda a: a[@]) #sort the Llist by x coordinates

« If less than five fiducials found, repeat Slides 5-7 using discolored fiducial as template image

Shieldbox Number ML | BERKELEY LAB 7

Attempt 1: Intuition

Crop shieldbox

« Use determined fiducial pair and coordinate values/distances/ratios to find top-left and bottom-
right corners

Corner = (fiducial_x + constant*dx, fiducial_y + constant*dy)
— Constants determined experimentally

Crop shieldbox from corner to corner

Full code available on GitLab

Benefits:
— It kind of works (crops shieldbox region for 238/239 images)
— What | initially thought of

Why this failed:

— Not consistent enough (i.e. varying crop sizes)
- Doesn’t account for rotation of image or zoom correctly

Shieldbox Number ML | BERKELEY LAB 8

Rotating the image

Let’'s make a function

11 def rotate_image(image, angle): #I wonder what this does

12 height, width = image.shape[:2] #get image dimensions
3
14 rotation_matrix = cv.getRotationMatrix2D((width / 2, height / 2), angle, 1) #calculate the rotation matrix
15
16 rotated_image = cv.warpAffine(image, rotation_matrix, (width, height)) #apply the rotation to the image
17
18 return rotated_image #I wonder what this is

* Need to get angle

Shieldbox Number ML | BERKELEY LAB

Angle Attempt 1: Trig

o/ Ay cosHf

Shieldbox Number ML | BERKELEY LAB AX COSG

“Solution”:
* AX =Ax cosB - Ay sin6
« Ay’ = Ax sin® + Ay cos6
— Sub trig for 1st order Taylor

Why this failed:
* It was wrong
* That is not how geometry works

« Everything but the solution egs was fine

— But even the diagram assumes the image rotates
around the second fiducial (false)

10

Angle Attempt 2: Finding the white border

» Use cv2.HoughLinesP to locate longest white line on image

* Find angle between that line and the horizontal

* Why this failed:
— Not consistently locating the white border

- Too many other lines on image
- Reducing the pixel range scanned did not help

Shieldbox Number ML | BERKELEY LAB

11

Angle Attempt 3: Revenge of the Trig

Vector time

* When making slides for this presentation, | realized we were doing the trig incorrectly
Asked a robot for help

178 dot_product = dx_original * dx_rotated_scaled + dy_original * dy rotated_scaled
179 cross_product = dx_original * dy_rotated_scaled - dy_original * dx_rotated_scaled

180 rotation_angle = np.arctan2(cross_product, dot_product)*180/np.pi
181

182 rotated_image = rotate_image(img, rotation_angle)

* Why does this work?
— Can think of our two sets of ordered pairs as vectors

lvxwl|

— tanf =

— np.arctan? takes the arctangent of a value with a numerator and denominator

Shieldbox Number ML | BERKELEY LAB 12

Correcting the zoom

It'd be too easy if the camera zoom was the same every time

244 scale_factor = np.sqrt(dx_original**2 + dy_original**2) / np.sgrt(dx_original**2 + dy_original**2)
245

246 new_width = int(image_color.shape[1l] * scale_factor) #use the scale to scale

247 new_height = int(image_color.shape[®] * scale_factor)

248

249 resized_image = cv.resize(rotated_image, (new_width, new_height))

* Why does this work?

— Scale factor is the ratio of the distances between the original image points and the
crooked/zoomed image points

Shieldbox Number ML | BERKELEY LAB

13

The end...?

At least for Sam at LBNL

- Surprise! I'm leaving
— Starting grad school at Davis in the fall
— My two-year reign of being funny at the lab concludes

 But this project isn’t done?
— You're right
— Steps left to do:
- Crop the zoomed and straightened image
— Can either be done:

» by aligning the first registered fiducial with the first registered fiducial on a perfectly-
straight image

» by manually assessing the cropped region based on how far the fiducial pairs are from
each other (see Slide 8)

Shieldbox Number ML | BERKELEY LAB 14

The end...?
At least for Sam at LBNL

— More steps left to do:
- Run a machine learning algorithm to identify the shieldbox numbers
— A skeleton code will be uploaded to Github by EoD
» Does not currently run due to lack of cropped images thus far, but has general idea
- Transfer these steps to Objective 2: Powerboard #

— Should be extremely easy, just a simpler version of cropping the shieldbox numbers and
a simpler ML algorithm (since the number is printed vs. etched on)

Shieldbox Number ML | BERKELEY LAB 15

Questions now?

