28 nm TDC design

Zhicai Zhang

LBNL

Jun 2, 2023 Weekly Instrumentation Meeting

Introduction

- Goal: design an in-pixel TDC with O(50 ps) resolution, O(μA) power consumption, O(10 ns) range (i.e. suitable for ATLAS/CMS pixels)
- Currently most developments are based on delay lines
 - Including TDCs for ATLAS/CMS Phase II timing detectors
 - Pros: can easily obtain ps-level LSB with modern technology
 - · Cons: big area, high power, heavily affected by mismatches
 - In the first two submissions of the LBNL 28 nm LDRD chip ("Big Rock" and "PEBBLES"), delay line based TDCs are used as on-chip testbed to characterize the AFE (10 ps RMS, 64 ns range, $50\times500\mu m$, 35 mW)

Time stretch method

- Fast charge a capacitor in the measured time window, and discharge it slowly after that: discharge time is proportional to charge time → time gets amplified
- Pros: fewer devices/smaller area (no need for long delay line), low power (can use small capacitor)
- Cons: long conversion time (need to keep the hit rate in mind in the design)

Time stretch unit

- For ATLAS pixel: 100 kHz hit rate corresponds to about 10 μ s maximum conversion time
- With a 40 MHz counter to measure the amplified time:
 - For 50 ps LSB \rightarrow amplify time by 500 times \rightarrow 5 μs conversion time for 10 ns range (a bit too long)
 - We can do two stage amplifications: first amplify original pulse by 20 times, then use 40 MHz counter to get MSB, then stretch the remaining pulse by another 20 times to get LSB \rightarrow conversion time can be reduced to $\sim 1\mu$ s

Two stage stretch schematics

Full chain simulation

Time stretcher noise

- $\bullet\,$ Higher charge current $\rightarrow\,$ less noise, but also smaller range
- For the first stage (60 nA, 13 ns range), effective noise is $1.14/40\sim0.03$ ns
- For the second stage (30 nA, 25 ns range), effective noise is $2.37/1600 \sim 0.001$ ns

Summary of TDC spec and simulation performance

Variable	requirement	result (simulation)	
Time resolution	< 50ps	LSB: \sim 25 ps	
		noise: \sim 30 ps	
		total: \sim 40 ps	
Area	$< 30 imes 50 \mu$ m	$15 imes13\mu$ m analog	
		$23 imes13\mu$ m digital (counters)	
		$38 imes13\mu$ m total	
Power	$< 10 \mu { m W}$ average	$< 5 \mu W$ during conversion	
Range	10 ns	13 ns	
Hit rate	\sim 100 kHz	max conversion time \sim 2 us (500 kHz)	

Stay tuned for in silicon test result (coming soon this Fall) !

Backup slides

Analog Frond End

1. Pierre Jarron, et. al, A transimpedance amplifier using a novel current mode feedback loop, 1996

Metric	Requirement	Simulated
Idc	~ 4 uA	6 uA
ToA S.D. (0.5 fC inj @ 0.15 fC)	~ 50 ps	50-60 ps
ENC	< 100 e RMS	80-90 e RMS
Threshold S.D.	*	
Timewalk (1.2 ke – 30 ke)	*	~ 3.5 ns
ТоТ	*	2-20 ns
Area	< 30 x 30 um	10 x 30 um

ToA Edge Distribution—"jitter"

Zhicai Zhang (LBNL)

28 nm TDC design