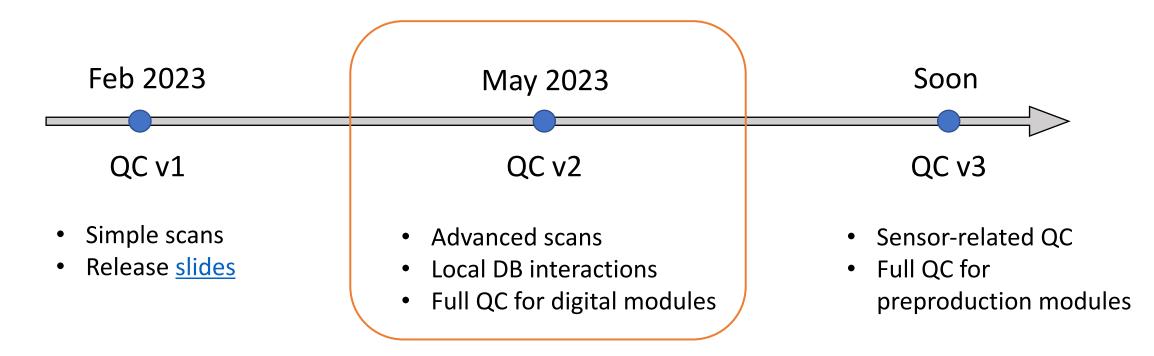
Module Electrical QC & LocalDB

Emily Anne Thompson

on behalf of module electrical QC and LocalDB team

Upgrade week, May 2023


https://indico.cern.ch/event/1223748/

Module electrical quality control (QC): Define testing procedures and specifications to ensure that modules perform electrically well, providing tools for testing

LocalDB: intermediate aggregation place at testing sites of the of the QC data during production

Specifications and procedures are documented: <u>AT2-IP-QA-0025 v.1</u> (latest version on <u>Gitlab</u>)

Electrical specification and QC procedures for ITkPixV1.1 modules

Project Document No.: Institute Document No.:	Created: 24th	n March 2022	Page: I of 29
AT2-IP-XX-XXXX	Modified: 26th	January 2023	Rev. No.: 0.1

For pre-production and production, specifications will change but electrical testing procedure will stay the same

We have currently defined specifications using the pre-production BoM. But all digital modules are using the LBL BoM \rightarrow digital modules slightly out of some spec Full suite of tests:

Simple	 First power-up ADC calibration + update chip configs Analog readback + update chip configs SLDO qualification Vcal calibration + update chip configs Injection capacitance + update chip configs Low power mode Over voltage protection
scans	 Over-voltage protection Undershunt protection (QC v3: not ready)
	10. Data transmission (QC v3: not ready)
	11. Link sharing (QC v3: not ready)
Advanced	12. Minimum health test
\prec	13. Tuning + update chip configs
scans	14. Pixel failure analysis

Section 3 of <u>electrical QC document</u>

The goal of these tools is to:

- Make electrical testing procedure easier and faster
- Standardize testing across different sites

Measurement	Analysis	Database interactions
<u>module-qc-tools</u>	<u>module-qc-</u> analysis-tools	<u>module-qc-</u> <u>database-tools</u>

Python-based packages with minimal requirements for use:

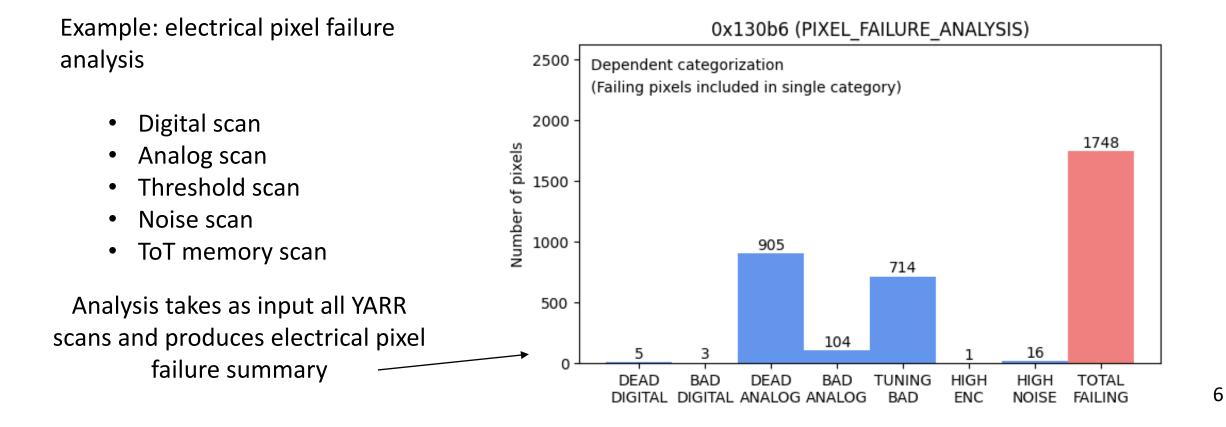
- Computer with <u>YARR</u> and >=Python3.7
- Command-line control of lab equipment (i.e. labRemote)

Thank you to QC-v2 developers:

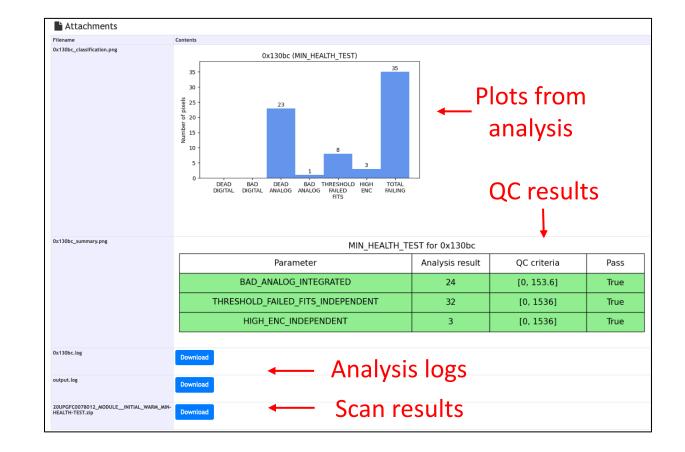
Kehang Bai, Timon Heim, Kosuke Itabashi, Marija Marjanovic, Lingxin Meng, Maria Mironova, Hideyuki Oide, Elisabetta Pianori, Giordon Stark, Emily Thompson, Connor Waits

Documentation in README's

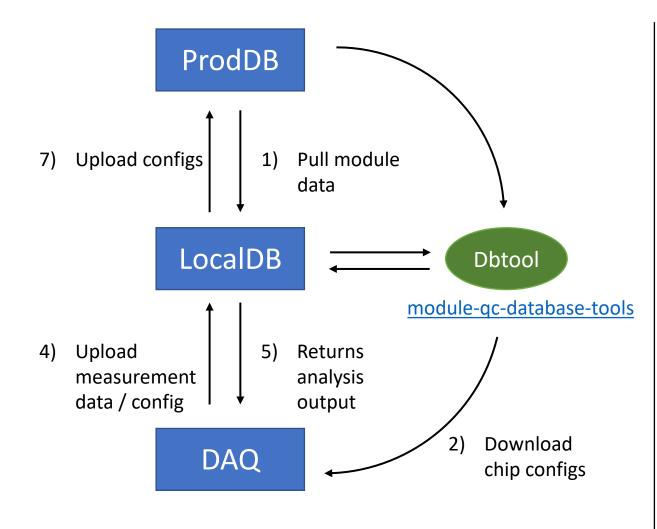
README.md
module-qc-tools v1.3.2rc0
A general python tool for running ITkPixV1.1 module QC tes
Table of contents
1. Requirements
2. Installation
3. Usage
4. Configuration and external commands
5. Measurements
1. ADC calibration
2. Analog readback
3. SLDOVI
4. VCal calibration
5. Injection capacitance
6. Low Power Mode
7. Overvoltage protection
6. Output data
7. Schema check
8. Time Estimates
9. Upload results to localDB
10. For developer


New in QC-v2

Analysis of advanced scans has been integrated into QC-tools framework


Advanced scans: minimum health test, tuning, and electrical pixel failure analysis

Each advanced scan requires user to run YARR scans – see <u>Appendix B.9</u> for details


Implemented full QC flow with QC-tools and LocalDB / prodDB communication

(screenshot of simple scan analysis output)

New in QC-v2: Communication with LocalDB

QC-v2 workflow:

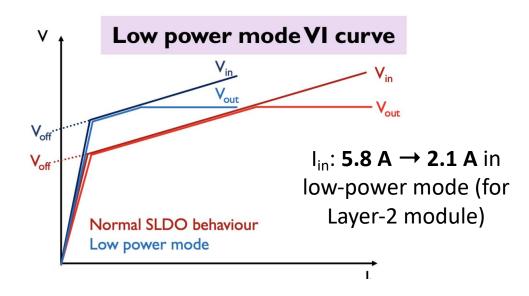
3) Run measurement 6) Update chip configs <u>module-qc-tools</u> <u>module-qc-analysis-tools</u>

Major change since QC-v1: analysis of QC data performed in LocalDB

We have tested this workflow at LBNL – it works!

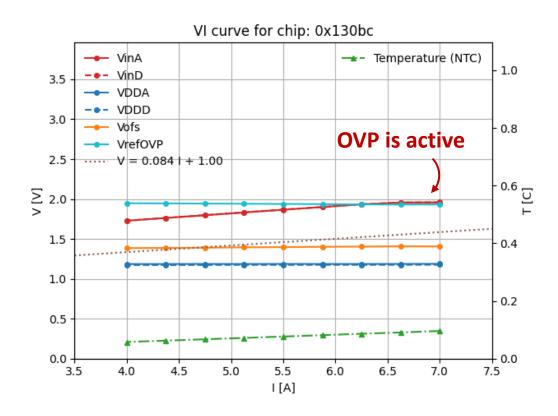
All steps except first and last are bash-scriptable (example from LBNL)

Notes:


Step 2: The Dbtool will obtain chip configs from previous stage or if not present, will generate from wafer probing

Steps 4-5 performed together: on upload LocalDB performs analysis and returns results when finished

Steps 3-6 repeated for each simple scan. Advanced scan workflow differs slightly (see backup)


More simple scans have been integrated into QC-tools framework

Low-power mode increases V_{offset}, allowing for chip to become operational for testing at lower I_{in}

- Low-power mode switch implemented in <u>firmware</u>
- Requires special low-power chip configs

Over-voltage protection (OVP) prevents V_{in} from exceeding 2V. OVP is tested in low-power mode.

How long does it take to perform electrical QC on a quad module?

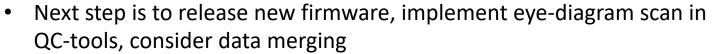
Measurement	Analysis
TBD	TBD
TBD	TBD
TBD	TBD
	Measurement TBD TBD TBD

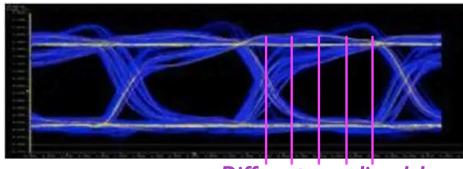
We have some ideas for speeding up simple scans

- re-write scans to reduce number of times needed to upload configs
- reduce granularity
- remove duplicate measurements of GND

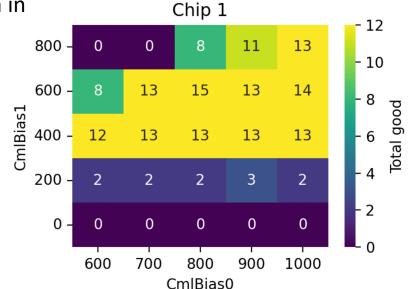
Next steps for module electrical QC (QC-v3)

We have made significant progress in previous 3 months, and we have a clear path forward on missing items:

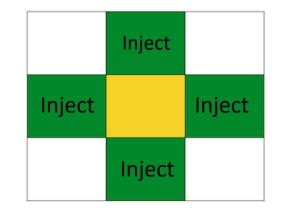

		Stage 1 (dig	gital module) warm		Stage 2(full QC)						
Step	1	2	3	4		spec	procedure	measurement	analysis	local db	database
	first power-up					\checkmark	\checkmark	NA	NA	NA	NA
		config from DB (Wafer probing)				NA	NA		NA	NA	
		C	ADC calibration			\sim	\checkmark		\checkmark	\checkmark	\checkmark
			Analog readback			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
			SLDO VI			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
_			Vcal calibration			\sim	\checkmark		\checkmark	\checkmark	\checkmark
_ow			Injection Capacitance			\sim	\checkmark		\sim		\checkmark
Low level	S	imple 丿		config from DB (elec QC)		NA	NA		NA	NA	
	S	cans		LP mode		\sim	\checkmark		\checkmark		
				Undershunt protection							
				Data Transmission							
				Overvoltage protection							
Adv	vanced	Min. health test				\sim	\checkmark		\checkmark		
Hig	cans \prec		Tuning								
High level			(Elec) Pixel Failure 1.0	ſ	Pixel Failure 2.0						
-			Sensor-relate	d OC	source scan						
					disc bump						
					0-bias		\checkmark				\checkmark

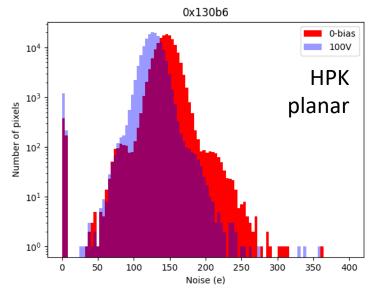

Only two remaining simple scans needs to be integrated:

- 1. Under-shunt protection Lowers V_{ref} to reduce I_{load} if I_{load} approaches I_{in}
 - Testing procedure has been proposed specifications and integration into tools still needed
 - See recent <u>update</u> from Konstantin Mauer


2. Data transmission

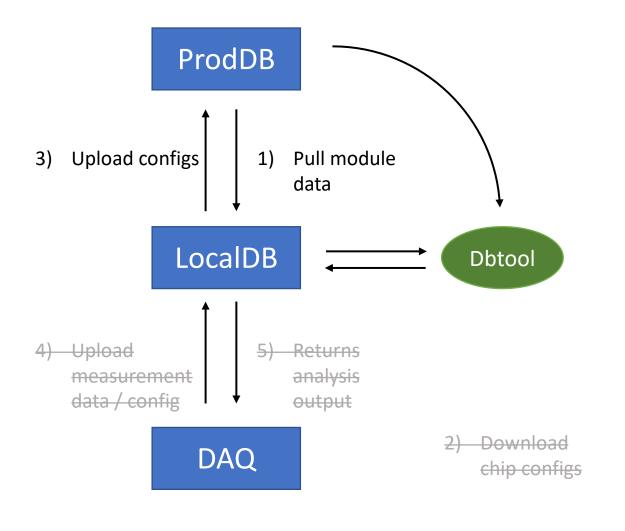
 Operation at 1.28 Gbps is more stable after adding new deserialiser in YARR firmware, allowing for manual varying of sampling delay (see recent <u>update</u> from Maria Mironova).


Different sampling delays



Full pixel failure test – following scans have been partially **implemented into QC-tools framework**, but **missing procedure / specifications** – we need all module / sensor types to converge quickly

- Merged bump scan
 - Inject moderate charge into neighboring pixels, do not expect cross-talk unless merged
- Disconnected bump scan
 - Inject very high charge into neighboring pixels, expect crosstalk if connected
- Zero-bias scan
 - Compare noise from threshold scan with and without sensor biased
- Source scan
 - Run source scan, expect hits if connected


We will develop procedure and specifications based on what we have available at LBNL (currently two modules, one HPK planar and one Advacam micron)

Coming soon in QC-v3

QC-v3 workflow:

2) Run measurement 6) Update chip configs module-qc-tools For QC-v3 (full QC flow), we envision:

Simplified workflow, further automation

- No handling of chip configs in local file system
- YARR communicates directly with localDB, obtaining chip configs when running measurements
- Update of chip configs happens in localDB with analysis
- Wrap in GUI: no need to open terminal

Site qualification update

Qualification for blocks 11.1-11.3 is progressing

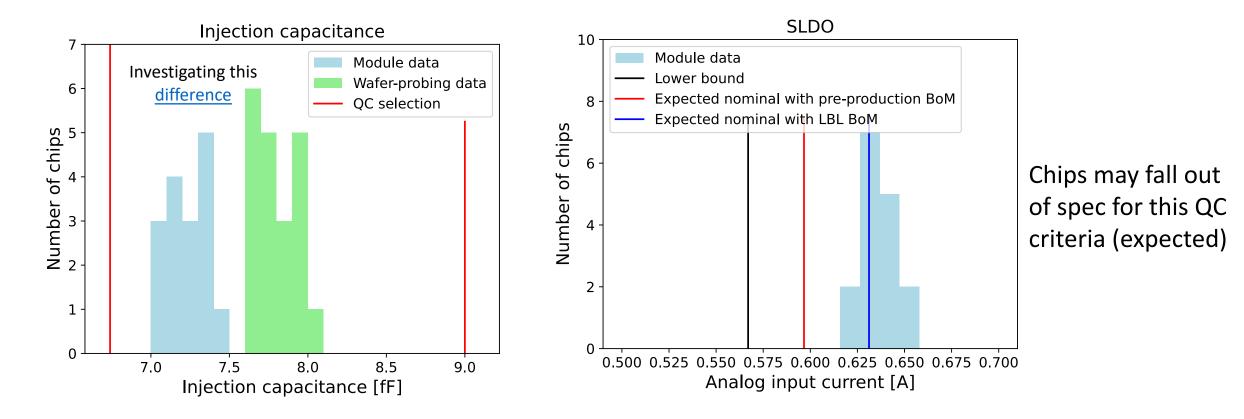
We will release qualification for block 11.4 (advanced scans) soon, and am working towards what is needed for sensor-related QC with pre-production modules

Mention how many sites have qualified?

Review team:

Electrical QC coordinators + Abhishek Sharma, Jon Taylor, Yannick Dieter, Anastasia Kotsokechagia, Emily Thompson

Email us:


itk-pixel-module-electricalQCreview@cern.ch

11	Digital module tests		
	11.	1 First power-up	TRUE
	11.	2 Minimal tests	TRUE
	11.	3 Simple scans	TRUE
	11.	4 Advanced scans	FALSE
	11.	5 Swapping module	FALSE
	11.	6 Quad & Triplet Complementary stage	FALSE

From Module Site Qualification

Update this

Analysis of 5 digital modules tested at LBNL:

Next steps: More in-depth analysis, perform analysis from data in prodDB, allow comparison of module QC results at different stages.

- We have framework for full workflow in place including simple scans, advanced scans, and communication with LocalDB
- Adding / changing electrical tests will be significantly easier now that we have framework in place
- Our focus in the next few weeks:
 - Finishing up simple scans
 - Sensor-related QC
 - Releasing remaining site qualification blocks
 - Improving / speeding up workflow

Backup

Resources

Electrical QC Documentation:

- Module electrical QC document (<u>EDMS</u>, <u>Gitlab</u>)
- Module QC Stages and Tests
- Module Site Qualification
- Template for module QC qualification (11.1-11.3): <u>template</u>

Support:

- <u>Electrical testing meeting</u>: **Tuesdays, 5 pm CET**
- Follow regular updates from electrical QC in Module WG meeting: Thursdays, 4 pm CET
- The <u>Mattermost</u> Electrical Testing channel
- Make an <u>issue</u> on gitlab : report problems encountered during testing, helps keep discussions in the same thread if mattermost gets too hectic
- Above support is sufficient so far, however module QC group will setup "office hours" if needed

LoclaIDB useful links:

Local Database User Support mattermost

LocalDB documentation

LocalDB issue tracker

LocalDB demo videos

Development of tools

https://gitlab.cern.ch/atlas-itk/pixel/module

♦	■ Q Search GitLab /	D1 111	· ⊠ 99+ @ •
М	atlas-itk > •••• > module		
⊕ ₽ ₽	M module figure Group ID: 34875 figure Leave group Recent activity Merge Requests created Issues created Members added Last 30 days 29 35 4		
	Subgroups and projects Shared projects Archived projects Q Sea > %• I ITkPix_preprod 🔂	rch	Updated ~ ↓= %• 0 ① 2 卷 1
	> %● R rd53a_program 合		°•0 (Ĵ 2 ĉ8 1
	Maintainer	★ 3	16 hours ago
	Maintainer This project contains the code used to analyze the data from electrical testing of	★ 2	16 hours ago
	M module QC database tools 合	★ 0	23 hours ago
	🗇 I itkpix-electrical-qc 🕂	★ 2	1 day ago
	3 days ago		

So far we have received **positive and constructive feedback** – we encourage users to document their difficulties / questions in issues so we can develop in a transparent way

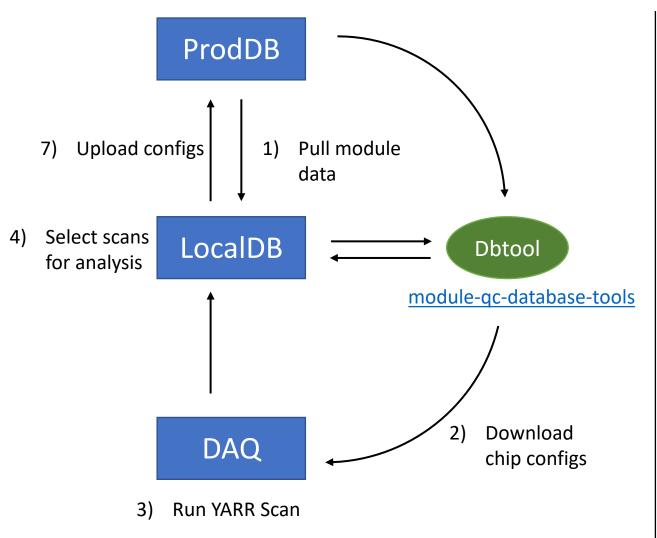
People can contribute! Get in touch with us if you want to help develop.

Follow technical discussion of tools at the <u>Electrical testing</u> <u>meeting</u> (Tuesdays, 5 pm CET) Eventually we will use QC data from pre-production to optimize QC procedure in production

We are not there yet. At the moment we want to collect data to:

- Adjust QC specifications
- Understand what is the module yield driver
- How frequently do we need to re-perform tests? Do chip parameters change? If so, why?

To facilitate analysis of QC results prior to prodDB-readiness, we have setup submission to google sheets via module-qc-analysis-tools


- Module-qc-analysis-tools will produce URL's (1 / chip / test), and user needs to copy/paste URL into browser to submit results (details in <u>SQ template</u>)
- View submitted results <u>here</u>

Failure	Scan type	Criteria
Digital Dead	Digital Scan	Occupancy<1% of injections
Digital Bad	Digital Scan	Occupancy $< 98\%$ or $> 102\%$ of injections
Analog Dead	Analog Scan	Occupancy<1% of injections
Analog Bad	Analog Scan	Occupancy<98% or>102% of injections
Tuning Bad	Threshold Scan	Pixel threshold - Mean threshold distribution $> 5 \times 40e^*$
High ENC	Threshold Scan	Mean pixel noise $< 200e$ (L0) or $< 300e$ (L1/L2)
Noisy	Noise Scan	Occupancy> 10^{-6} hits per BC
ToT Memory Failure	ToT Memory test	Occupancy $<100\%$ of injections

Table 10: Electrical pixel failure categories

From electrical QC document

QC-v2 workflow (advanced scans):

Notes:

Step 2: The Dbtool will obtain chip configs from previous stage or if not present, will generate from wafer probing

Steps 3: YARR runs scan, updates chip configs locally, and uploads scan results and updated chip configs to LocalDB

Step 4: User selects YARR scans on LocalDB viewer to perform complex analysis

Steps 3, 4 is repeated for each advanced scan.

Qualification for blocks 11.1 – 11.3 released, coming soon: 11.4 - 11.5 and 12.2

How does qualification work?

- 1. Sites follow directions in <u>electrical QC document</u>
- 2. Sites are required to use some tools (database, analysis) and strongly encouraged to use measurement tool
- 3. Sites get help via <u>mattermost</u>, creating an issue in <u>gitlab</u>, or by attending <u>electrical QC meeting</u>
- 4. When ready, they prepare slides following <u>template</u>
- 5. Upload slides + material to cernbox, use SQ webapp to upload link, send an email to electrical QC coordinators