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Figure 7. Left: trajectories of the first 3.5 turns (2 MeV) in the simulated central region. Reproduced with permission from [38].
(c) AIMA Right: demonstrated turn separation of 1 cm (edge-to-edge) after placing a single collimator in the first turn. Beam
transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.

3. Methodology

3.1. OPAL simulation code
OPAL [40] is a suite of software for the simulation of particle accelerators, which originates at the Paul
Scherrer Institute, and which is programmed in C++. One of the available flavors is OPAL-CYCL, which is
specifically created to simulate cyclotrons, and which we used for this study. The following is a brief
summary of the description in [39]. OPAL uses the particle-in-cell (PIC) method to solve the collisionless
Vlasov equation

df
dt

= ∂t f +
M∑

j=1

[
∂f
∂xj

ẋj + q(E + cβ × B)j
∂f
∂Pj

]
,

in the presence of external electromagnetic fields and self-fields,

E = Eext + Eself, (1)

B = Bext + Bself. (2)

Here, x and P are the canonical position and momentum of the particles in the distribution function

f (x, P, t) : (R3M × R3M × R) → R,

and M, c, t, q, and β = v/c, the number of simulation particles, vacuum speed of light, time, charge of a
particle, and velocity scaled by c, respectively. A 4th order Runge–Kutta (RK) integrator is used for time
integration. External fields are evaluated four times per time step. Self-fields are assumed to be constant
during one time step, because they typically vary much slower than the external fields.

The self fields Eself and Bself are calculated on a grid using a fast Fourier transform method. The external
fields Eext and Bext can be calculated with any method of the users choosing and then loaded into OPAL
either as a 2D median plane field (magnetic field only) or a full 3D electromagnetic field map. OPAL uses a
series expansion to calculate off-plane elements from the 2D median plane fields. Furthermore, the 3D
maps are time-varied according to

Eext,3D(t) = Eext,3D,0 · cos(ωRFt − φS)

with ωRF the cyclotron RF frequency and φS the phase. If a static 3D field is desired, the frequency and
phase can be set to zero. Here, we used OPERA to calculate the median plane field and COMSOL [41] for
the 3D electrostatic fields of the extraction system.

OPAL-CYCL comes with a number of built-in diagnostic devices. One such diagnostic is the OPAL
PROBE. It is a 2D rectangle placed in the 3D simulation space. Whenever a particle crosses the probe plane,
it is registered and the particle data is added to the probe data storage. In section 4 we denote probes with a
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Figure7.Left:trajectoriesofthefirst3.5turns(2MeV)inthesimulatedcentralregion.Reproducedwithpermissionfrom[38].
(c)AIMARight:demonstratedturnseparationof1cm(edge-to-edge)afterplacingasinglecollimatorinthefirstturn.Beam
transmissionfromtheentranceofthespiralinflectortotheprobewas42%.Thissimulationdidnotconsiderspacecharge.

3.Methodology

3.1.OPALsimulationcode
OPAL[40]isasuiteofsoftwareforthesimulationofparticleaccelerators,whichoriginatesatthePaul
ScherrerInstitute,andwhichisprogrammedinC++.OneoftheavailableflavorsisOPAL-CYCL,whichis
specificallycreatedtosimulatecyclotrons,andwhichweusedforthisstudy.Thefollowingisabrief
summaryofthedescriptionin[39].OPALusestheparticle-in-cell(PIC)methodtosolvethecollisionless
Vlasovequation

df
dt

=∂tf+
M∑

j=1
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∂f
∂xj

ẋj+q(E+cβ×B)j
∂f
∂Pj

]
,

inthepresenceofexternalelectromagneticfieldsandself-fields,

E=Eext+Eself,(1)

B=Bext+Bself.(2)

Here,xandParethecanonicalpositionandmomentumoftheparticlesinthedistributionfunction

f(x,P,t):(R3M×R3M×R)→R,

andM,c,t,q,andβ=v/c,thenumberofsimulationparticles,vacuumspeedoflight,time,chargeofa
particle,andvelocityscaledbyc,respectively.A4thorderRunge–Kutta(RK)integratorisusedfortime
integration.Externalfieldsareevaluatedfourtimespertimestep.Self-fieldsareassumedtobeconstant
duringonetimestep,becausetheytypicallyvarymuchslowerthantheexternalfields.

TheselffieldsEselfandBselfarecalculatedonagridusingafastFouriertransformmethod.Theexternal
fieldsEextandBextcanbecalculatedwithanymethodoftheuserschoosingandthenloadedintoOPAL
eitherasa2Dmedianplanefield(magneticfieldonly)orafull3Delectromagneticfieldmap.OPALusesa
seriesexpansiontocalculateoff-planeelementsfromthe2Dmedianplanefields.Furthermore,the3D
mapsaretime-variedaccordingto

Eext,3D(t)=Eext,3D,0·cos(ωRFt−φS)

withωRFthecyclotronRFfrequencyandφSthephase.Ifastatic3Dfieldisdesired,thefrequencyand
phasecanbesettozero.Here,weusedOPERAtocalculatethemedianplanefieldandCOMSOL[41]for
the3Delectrostaticfieldsoftheextractionsystem.

OPAL-CYCLcomeswithanumberofbuilt-indiagnosticdevices.OnesuchdiagnosticistheOPAL
PROBE.Itisa2Drectangleplacedinthe3Dsimulationspace.Wheneveraparticlecrossestheprobeplane,
itisregisteredandtheparticledataisaddedtotheprobedatastorage.Insection4wedenoteprobeswitha
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Figure 7. Left: trajectories of the first 3.5 turns (2 MeV) in the simulated central region. Reproduced with permission from [38].
(c) AIMA Right: demonstrated turn separation of 1 cm (edge-to-edge) after placing a single collimator in the first turn. Beam
transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.

3. Methodology

3.1. OPAL simulation code
OPAL [40] is a suite of software for the simulation of particle accelerators, which originates at the Paul
Scherrer Institute, and which is programmed in C++. One of the available flavors is OPAL-CYCL, which is
specifically created to simulate cyclotrons, and which we used for this study. The following is a brief
summary of the description in [39]. OPAL uses the particle-in-cell (PIC) method to solve the collisionless
Vlasov equation

df
dt

= ∂t f +
M∑

j=1

[
∂f
∂xj

ẋj + q(E + cβ × B)j
∂f
∂Pj

]
,

in the presence of external electromagnetic fields and self-fields,

E = Eext + Eself, (1)

B = Bext + Bself. (2)

Here, x and P are the canonical position and momentum of the particles in the distribution function

f (x, P, t) : (R3M × R3M × R) → R,

and M, c, t, q, and β = v/c, the number of simulation particles, vacuum speed of light, time, charge of a
particle, and velocity scaled by c, respectively. A 4th order Runge–Kutta (RK) integrator is used for time
integration. External fields are evaluated four times per time step. Self-fields are assumed to be constant
during one time step, because they typically vary much slower than the external fields.

The self fields Eself and Bself are calculated on a grid using a fast Fourier transform method. The external
fields Eext and Bext can be calculated with any method of the users choosing and then loaded into OPAL
either as a 2D median plane field (magnetic field only) or a full 3D electromagnetic field map. OPAL uses a
series expansion to calculate off-plane elements from the 2D median plane fields. Furthermore, the 3D
maps are time-varied according to

Eext,3D(t) = Eext,3D,0 · cos(ωRFt − φS)

with ωRF the cyclotron RF frequency and φS the phase. If a static 3D field is desired, the frequency and
phase can be set to zero. Here, we used OPERA to calculate the median plane field and COMSOL [41] for
the 3D electrostatic fields of the extraction system.

OPAL-CYCL comes with a number of built-in diagnostic devices. One such diagnostic is the OPAL
PROBE. It is a 2D rectangle placed in the 3D simulation space. Whenever a particle crosses the probe plane,
it is registered and the particle data is added to the probe data storage. In section 4 we denote probes with a
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ẋj + q(E + cβ × B)j
∂f
∂Pj

]
,

in the presence of external electromagnetic fields and self-fields,

E = Eext + Eself, (1)

B = Bext + Bself. (2)

Here, x and P are the canonical position and momentum of the particles in the distribution function

f (x, P, t) : (R3M × R3M × R) → R,

and M, c, t, q, and β = v/c, the number of simulation particles, vacuum speed of light, time, charge of a
particle, and velocity scaled by c, respectively. A 4th order Runge–Kutta (RK) integrator is used for time
integration. External fields are evaluated four times per time step. Self-fields are assumed to be constant
during one time step, because they typically vary much slower than the external fields.

The self fields Eself and Bself are calculated on a grid using a fast Fourier transform method. The external
fields Eext and Bext can be calculated with any method of the users choosing and then loaded into OPAL
either as a 2D median plane field (magnetic field only) or a full 3D electromagnetic field map. OPAL uses a
series expansion to calculate off-plane elements from the 2D median plane fields. Furthermore, the 3D
maps are time-varied according to

Eext,3D(t) = Eext,3D,0 · cos(ωRFt − φS)

with ωRF the cyclotron RF frequency and φS the phase. If a static 3D field is desired, the frequency and
phase can be set to zero. Here, we used OPERA to calculate the median plane field and COMSOL [41] for
the 3D electrostatic fields of the extraction system.

OPAL-CYCL comes with a number of built-in diagnostic devices. One such diagnostic is the OPAL
PROBE. It is a 2D rectangle placed in the 3D simulation space. Whenever a particle crosses the probe plane,
it is registered and the particle data is added to the probe data storage. In section 4 we denote probes with a

7

New J. Phys. 24 (2022) 023038 D Winklehner et al

Figure 7. Left: trajectories of the first 3.5 turns (2 MeV) in the simulated central region. Reproduced with permission from [38].
(c) AIMA Right: demonstrated turn separation of 1 cm (edge-to-edge) after placing a single collimator in the first turn. Beam
transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.

3. Methodology

3.1. OPAL simulation code
OPAL [40] is a suite of software for the simulation of particle accelerators, which originates at the Paul
Scherrer Institute, and which is programmed in C++. One of the available flavors is OPAL-CYCL, which is
specifically created to simulate cyclotrons, and which we used for this study. The following is a brief
summary of the description in [39]. OPAL uses the particle-in-cell (PIC) method to solve the collisionless
Vlasov equation

df
dt

= ∂t f +
M∑

j=1

[
∂f
∂xj
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transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.

3. Methodology

3.1. OPAL simulation code
OPAL [40] is a suite of software for the simulation of particle accelerators, which originates at the Paul
Scherrer Institute, and which is programmed in C++. One of the available flavors is OPAL-CYCL, which is
specifically created to simulate cyclotrons, and which we used for this study. The following is a brief
summary of the description in [39]. OPAL uses the particle-in-cell (PIC) method to solve the collisionless
Vlasov equation
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B = Bext + Bself. (2)

Here, x and P are the canonical position and momentum of the particles in the distribution function
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and M, c, t, q, and β = v/c, the number of simulation particles, vacuum speed of light, time, charge of a
particle, and velocity scaled by c, respectively. A 4th order Runge–Kutta (RK) integrator is used for time
integration. External fields are evaluated four times per time step. Self-fields are assumed to be constant
during one time step, because they typically vary much slower than the external fields.

The self fields Eself and Bself are calculated on a grid using a fast Fourier transform method. The external
fields Eext and Bext can be calculated with any method of the users choosing and then loaded into OPAL
either as a 2D median plane field (magnetic field only) or a full 3D electromagnetic field map. OPAL uses a
series expansion to calculate off-plane elements from the 2D median plane fields. Furthermore, the 3D
maps are time-varied according to

Eext,3D(t) = Eext,3D,0 · cos(ωRFt − φS)

with ωRF the cyclotron RF frequency and φS the phase. If a static 3D field is desired, the frequency and
phase can be set to zero. Here, we used OPERA to calculate the median plane field and COMSOL [41] for
the 3D electrostatic fields of the extraction system.

OPAL-CYCL comes with a number of built-in diagnostic devices. One such diagnostic is the OPAL
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Figure7.Left:trajectoriesofthefirst3.5turns(2MeV)inthesimulatedcentralregion.Reproducedwithpermissionfrom[38].
(c)AIMARight:demonstratedturnseparationof1cm(edge-to-edge)afterplacingasinglecollimatorinthefirstturn.Beam
transmissionfromtheentranceofthespiralinflectortotheprobewas42%.Thissimulationdidnotconsiderspacecharge.

3.Methodology

3.1.OPALsimulationcode
OPAL[40]isasuiteofsoftwareforthesimulationofparticleaccelerators,whichoriginatesatthePaul
ScherrerInstitute,andwhichisprogrammedinC++.OneoftheavailableflavorsisOPAL-CYCL,whichis
specificallycreatedtosimulatecyclotrons,andwhichweusedforthisstudy.Thefollowingisabrief
summaryofthedescriptionin[39].OPALusestheparticle-in-cell(PIC)methodtosolvethecollisionless
Vlasovequation

df
dt

=∂tf+
M∑

j=1

[
∂f
∂xj

ẋj+q(E+cβ×B)j
∂f
∂Pj

]
,

inthepresenceofexternalelectromagneticfieldsandself-fields,

E=Eext+Eself,(1)

B=Bext+Bself.(2)

Here,xandParethecanonicalpositionandmomentumoftheparticlesinthedistributionfunction

f(x,P,t):(R3M×R3M×R)→R,

andM,c,t,q,andβ=v/c,thenumberofsimulationparticles,vacuumspeedoflight,time,chargeofa
particle,andvelocityscaledbyc,respectively.A4thorderRunge–Kutta(RK)integratorisusedfortime
integration.Externalfieldsareevaluatedfourtimespertimestep.Self-fieldsareassumedtobeconstant
duringonetimestep,becausetheytypicallyvarymuchslowerthantheexternalfields.

TheselffieldsEselfandBselfarecalculatedonagridusingafastFouriertransformmethod.Theexternal
fieldsEextandBextcanbecalculatedwithanymethodoftheuserschoosingandthenloadedintoOPAL
eitherasa2Dmedianplanefield(magneticfieldonly)orafull3Delectromagneticfieldmap.OPALusesa
seriesexpansiontocalculateoff-planeelementsfromthe2Dmedianplanefields.Furthermore,the3D
mapsaretime-variedaccordingto

Eext,3D(t)=Eext,3D,0·cos(ωRFt−φS)

withωRFthecyclotronRFfrequencyandφSthephase.Ifastatic3Dfieldisdesired,thefrequencyand
phasecanbesettozero.Here,weusedOPERAtocalculatethemedianplanefieldandCOMSOL[41]for
the3Delectrostaticfieldsoftheextractionsystem.

OPAL-CYCLcomeswithanumberofbuilt-indiagnosticdevices.OnesuchdiagnosticistheOPAL
PROBE.Itisa2Drectangleplacedinthe3Dsimulationspace.Wheneveraparticlecrossestheprobeplane,
itisregisteredandtheparticledataisaddedtotheprobedatastorage.Insection4wedenoteprobeswitha
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Figure 7. Left: trajectories of the first 3.5 turns (2 MeV) in the simulated central region. Reproduced with permission from [38].
(c) AIMA Right: demonstrated turn separation of 1 cm (edge-to-edge) after placing a single collimator in the first turn. Beam
transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.

3. Methodology

3.1. OPAL simulation code
OPAL [40] is a suite of software for the simulation of particle accelerators, which originates at the Paul
Scherrer Institute, and which is programmed in C++. One of the available flavors is OPAL-CYCL, which is
specifically created to simulate cyclotrons, and which we used for this study. The following is a brief
summary of the description in [39]. OPAL uses the particle-in-cell (PIC) method to solve the collisionless
Vlasov equation

df
dt

= ∂t f +
M∑

j=1

[
∂f
∂xj

ẋj + q(E + cβ × B)j
∂f
∂Pj

]
,

in the presence of external electromagnetic fields and self-fields,

E = Eext + Eself, (1)

B = Bext + Bself. (2)

Here, x and P are the canonical position and momentum of the particles in the distribution function

f (x, P, t) : (R3M × R3M × R) → R,

and M, c, t, q, and β = v/c, the number of simulation particles, vacuum speed of light, time, charge of a
particle, and velocity scaled by c, respectively. A 4th order Runge–Kutta (RK) integrator is used for time
integration. External fields are evaluated four times per time step. Self-fields are assumed to be constant
during one time step, because they typically vary much slower than the external fields.

The self fields Eself and Bself are calculated on a grid using a fast Fourier transform method. The external
fields Eext and Bext can be calculated with any method of the users choosing and then loaded into OPAL
either as a 2D median plane field (magnetic field only) or a full 3D electromagnetic field map. OPAL uses a
series expansion to calculate off-plane elements from the 2D median plane fields. Furthermore, the 3D
maps are time-varied according to

Eext,3D(t) = Eext,3D,0 · cos(ωRFt − φS)

with ωRF the cyclotron RF frequency and φS the phase. If a static 3D field is desired, the frequency and
phase can be set to zero. Here, we used OPERA to calculate the median plane field and COMSOL [41] for
the 3D electrostatic fields of the extraction system.

OPAL-CYCL comes with a number of built-in diagnostic devices. One such diagnostic is the OPAL
PROBE. It is a 2D rectangle placed in the 3D simulation space. Whenever a particle crosses the probe plane,
it is registered and the particle data is added to the probe data storage. In section 4 we denote probes with a
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transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.
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ẋj + q(E + cβ × B)j
∂f
∂Pj

]
,

in the presence of external electromagnetic fields and self-fields,

E = Eext + Eself, (1)

B = Bext + Bself. (2)

Here, x and P are the canonical position and momentum of the particles in the distribution function

f (x, P, t) : (R
3M

× R
3M

× R) → R,

and M, c, t, q, and β = v/c, the number of simulation particles, vacuum speed of light, time, charge of a
particle, and velocity scaled by c, respectively. A 4th order Runge–Kutta (RK) integrator is used for time
integration. External fields are evaluated four times per time step. Self-fields are assumed to be constant
during one time step, because they typically vary much slower than the external fields.

The self fields Eself and Bself are calculated on a grid using a fast Fourier transform method. The external
fields Eext and Bext can be calculated with any method of the users choosing and then loaded into OPAL
either as a 2D median plane field (magnetic field only) or a full 3D electromagnetic field map. OPAL uses a
series expansion to calculate off-plane elements from the 2D median plane fields. Furthermore, the 3D
maps are time-varied according to

Eext,3D(t) = Eext,3D,0 · cos(ωRFt − φS)

with ωRF the cyclotron RF frequency and φS the phase. If a static 3D field is desired, the frequency and
phase can be set to zero. Here, we used OPERA to calculate the median plane field and COMSOL [41] for
the 3D electrostatic fields of the extraction system.

OPAL-CYCL comes with a number of built-in diagnostic devices. One such diagnostic is the OPAL
PROBE. It is a 2D rectangle placed in the 3D simulation space. Whenever a particle crosses the probe plane,
it is registered and the particle data is added to the probe data storage. In section 4 we denote probes with a

7

New J. Phys. 24 (2022) 023038 D Winklehner et al

Figure 7. Left: trajectories of the first 3.5 turns (2 MeV) in the simulated central region. Reproduced with permission from [38].
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Figure 7. Left: trajectories of the first 3.5 turns (2 MeV) in the simulated central region. Reproduced with permission from [38].
(c) AIMA Right: demonstrated turn separation of 1 cm (edge-to-edge) after placing a single collimator in the first turn. Beam
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(c) AIMA Right: demonstrated turn separation of 1 cm (edge-to-edge) after placing a single collimator in the first turn. Beam
transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.

3. Methodology

3.1. OPAL simulation code
OPAL [40] is a suite of software for the simulation of particle accelerators, which originates at the Paul
Scherrer Institute, and which is programmed in C++. One of the available flavors is OPAL-CYCL, which is
specifically created to simulate cyclotrons, and which we used for this study. The following is a brief
summary of the description in [39]. OPAL uses the particle-in-cell (PIC) method to solve the collisionless
Vlasov equation

df
dt

= ∂t f +
M∑

j=1

[
∂f
∂xj
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OPAL [40] is a suite of software for the simulation of particle accelerators, which originates at the Paul
Scherrer Institute, and which is programmed in C++. One of the available flavors is OPAL-CYCL, which is
specifically created to simulate cyclotrons, and which we used for this study. The following is a brief
summary of the description in [39]. OPAL uses the particle-in-cell (PIC) method to solve the collisionless
Vlasov equation
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ẋj + q(E + cβ × B)j
∂f
∂Pj

]
,
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B = Bext + Bself. (2)

Here, x and P are the canonical position and momentum of the particles in the distribution function

f (x, P, t) : (R3M × R3M × R) → R,

and M, c, t, q, and β = v/c, the number of simulation particles, vacuum speed of light, time, charge of a
particle, and velocity scaled by c, respectively. A 4th order Runge–Kutta (RK) integrator is used for time
integration. External fields are evaluated four times per time step. Self-fields are assumed to be constant
during one time step, because they typically vary much slower than the external fields.

The self fields Eself and Bself are calculated on a grid using a fast Fourier transform method. The external
fields Eext and Bext can be calculated with any method of the users choosing and then loaded into OPAL
either as a 2D median plane field (magnetic field only) or a full 3D electromagnetic field map. OPAL uses a
series expansion to calculate off-plane elements from the 2D median plane fields. Furthermore, the 3D
maps are time-varied according to

Eext,3D(t) = Eext,3D,0 · cos(ωRFt − φS)

with ωRF the cyclotron RF frequency and φS the phase. If a static 3D field is desired, the frequency and
phase can be set to zero. Here, we used OPERA to calculate the median plane field and COMSOL [41] for
the 3D electrostatic fields of the extraction system.

OPAL-CYCL comes with a number of built-in diagnostic devices. One such diagnostic is the OPAL
PROBE. It is a 2D rectangle placed in the 3D simulation space. Whenever a particle crosses the probe plane,
it is registered and the particle data is added to the probe data storage. In section 4 we denote probes with a
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particle, and velocity scaled by c, respectively. A 4th order Runge–Kutta (RK) integrator is used for time
integration. External fields are evaluated four times per time step. Self-fields are assumed to be constant
during one time step, because they typically vary much slower than the external fields.

The self fields Eself and Bself are calculated on a grid using a fast Fourier transform method. The external
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the 3D electrostatic fields of the extraction system.
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it is registered and the particle data is added to the probe data storage. In section 4 we denote probes with a

7

New J. Phys. 24 (2022) 023038 D Winklehner et al
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(c) AIMA Right: demonstrated turn separation of 1 cm (edge-to-edge) after placing a single collimator in the first turn. Beam
transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.
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Figure7.Left:trajectoriesofthefirst3.5turns(2MeV)inthesimulatedcentralregion.Reproducedwithpermissionfrom[38].
(c)AIMARight:demonstratedturnseparationof1cm(edge-to-edge)afterplacingasinglecollimatorinthefirstturn.Beam
transmissionfromtheentranceofthespiralinflectortotheprobewas42%.Thissimulationdidnotconsiderspacecharge.
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3.1.OPALsimulationcode
OPAL[40]isasuiteofsoftwareforthesimulationofparticleaccelerators,whichoriginatesatthePaul
ScherrerInstitute,andwhichisprogrammedinC++.OneoftheavailableflavorsisOPAL-CYCL,whichis
specificallycreatedtosimulatecyclotrons,andwhichweusedforthisstudy.Thefollowingisabrief
summaryofthedescriptionin[39].OPALusestheparticle-in-cell(PIC)methodtosolvethecollisionless
Vlasovequation
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Here,xandParethecanonicalpositionandmomentumoftheparticlesinthedistributionfunction

f(x,P,t):(R3M×R3M×R)→R,

andM,c,t,q,andβ=v/c,thenumberofsimulationparticles,vacuumspeedoflight,time,chargeofa
particle,andvelocityscaledbyc,respectively.A4thorderRunge–Kutta(RK)integratorisusedfortime
integration.Externalfieldsareevaluatedfourtimespertimestep.Self-fieldsareassumedtobeconstant
duringonetimestep,becausetheytypicallyvarymuchslowerthantheexternalfields.

TheselffieldsEselfandBselfarecalculatedonagridusingafastFouriertransformmethod.Theexternal
fieldsEextandBextcanbecalculatedwithanymethodoftheuserschoosingandthenloadedintoOPAL
eitherasa2Dmedianplanefield(magneticfieldonly)orafull3Delectromagneticfieldmap.OPALusesa
seriesexpansiontocalculateoff-planeelementsfromthe2Dmedianplanefields.Furthermore,the3D
mapsaretime-variedaccordingto

Eext,3D(t)=Eext,3D,0·cos(ωRFt−φS)

withωRFthecyclotronRFfrequencyandφSthephase.Ifastatic3Dfieldisdesired,thefrequencyand
phasecanbesettozero.Here,weusedOPERAtocalculatethemedianplanefieldandCOMSOL[41]for
the3Delectrostaticfieldsoftheextractionsystem.

OPAL-CYCLcomeswithanumberofbuilt-indiagnosticdevices.OnesuchdiagnosticistheOPAL
PROBE.Itisa2Drectangleplacedinthe3Dsimulationspace.Wheneveraparticlecrossestheprobeplane,
itisregisteredandtheparticledataisaddedtotheprobedatastorage.Insection4wedenoteprobeswitha
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ẋj+q(E+cβ×B)j
∂f
∂Pj

]
,

inthepresenceofexternalelectromagneticfieldsandself-fields,

E=Eext+Eself,(1)

B=Bext+Bself.(2)

Here,xandParethecanonicalpositionandmomentumoftheparticlesinthedistributionfunction

f(x,P,t):(R
3M

×R
3M

×R)→R,

andM,c,t,q,andβ=v/c,thenumberofsimulationparticles,vacuumspeedoflight,time,chargeofa
particle,andvelocityscaledbyc,respectively.A4thorderRunge–Kutta(RK)integratorisusedfortime
integration.Externalfieldsareevaluatedfourtimespertimestep.Self-fieldsareassumedtobeconstant
duringonetimestep,becausetheytypicallyvarymuchslowerthantheexternalfields.

TheselffieldsEselfandBselfarecalculatedonagridusingafastFouriertransformmethod.Theexternal
fieldsEextandBextcanbecalculatedwithanymethodoftheuserschoosingandthenloadedintoOPAL
eitherasa2Dmedianplanefield(magneticfieldonly)orafull3Delectromagneticfieldmap.OPALusesa
seriesexpansiontocalculateoff-planeelementsfromthe2Dmedianplanefields.Furthermore,the3D
mapsaretime-variedaccordingto

Eext,3D(t)=Eext,3D,0·cos(ωRFt−φS)

withωRFthecyclotronRFfrequencyandφSthephase.Ifastatic3Dfieldisdesired,thefrequencyand
phasecanbesettozero.Here,weusedOPERAtocalculatethemedianplanefieldandCOMSOL[41]for
the3Delectrostaticfieldsoftheextractionsystem.

OPAL-CYCLcomeswithanumberofbuilt-indiagnosticdevices.OnesuchdiagnosticistheOPAL
PROBE.Itisa2Drectangleplacedinthe3Dsimulationspace.Wheneveraparticlecrossestheprobeplane,
itisregisteredandtheparticledataisaddedtotheprobedatastorage.Insection4wedenoteprobeswitha

7

NewJ.Phys.24(2022)023038DWinklehneretal

Figure7.Left:trajectoriesofthefirst3.5turns(2MeV)inthesimulatedcentralregion.Reproducedwithpermissionfrom[38].
(c)AIMARight:demonstratedturnseparationof1cm(edge-to-edge)afterplacingasinglecollimatorinthefirstturn.Beam
transmissionfromtheentranceofthespiralinflectortotheprobewas42%.Thissimulationdidnotconsiderspacecharge.

3.Methodology

3.1.OPALsimulationcode
OPAL[40]isasuiteofsoftwareforthesimulationofparticleaccelerators,whichoriginatesatthePaul
ScherrerInstitute,andwhichisprogrammedinC++.OneoftheavailableflavorsisOPAL-CYCL,whichis
specificallycreatedtosimulatecyclotrons,andwhichweusedforthisstudy.Thefollowingisabrief
summaryofthedescriptionin[39].OPALusestheparticle-in-cell(PIC)methodtosolvethecollisionless
Vlasovequation

df
dt

=∂tf+
M∑

j=1

[
∂f
∂xj
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Figure 7. Left: trajectories of the first 3.5 turns (2 MeV) in the simulated central region. Reproduced with permission from [38].
(c) AIMA Right: demonstrated turn separation of 1 cm (edge-to-edge) after placing a single collimator in the first turn. Beam
transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.

3. Methodology

3.1. OPAL simulation code
OPAL [40] is a suite of software for the simulation of particle accelerators, which originates at the Paul
Scherrer Institute, and which is programmed in C++. One of the available flavors is OPAL-CYCL, which is
specifically created to simulate cyclotrons, and which we used for this study. The following is a brief
summary of the description in [39]. OPAL uses the particle-in-cell (PIC) method to solve the collisionless
Vlasov equation

df
dt

= ∂t f +
M∑

j=1

[
∂f
∂xj

ẋj + q(E + cβ × B)j
∂f
∂Pj

]
,

in the presence of external electromagnetic fields and self-fields,

E = Eext + Eself, (1)

B = Bext + Bself. (2)

Here, x and P are the canonical position and momentum of the particles in the distribution function

f (x, P, t) : (R3M × R3M × R) → R,

and M, c, t, q, and β = v/c, the number of simulation particles, vacuum speed of light, time, charge of a
particle, and velocity scaled by c, respectively. A 4th order Runge–Kutta (RK) integrator is used for time
integration. External fields are evaluated four times per time step. Self-fields are assumed to be constant
during one time step, because they typically vary much slower than the external fields.

The self fields Eself and Bself are calculated on a grid using a fast Fourier transform method. The external
fields Eext and Bext can be calculated with any method of the users choosing and then loaded into OPAL
either as a 2D median plane field (magnetic field only) or a full 3D electromagnetic field map. OPAL uses a
series expansion to calculate off-plane elements from the 2D median plane fields. Furthermore, the 3D
maps are time-varied according to

Eext,3D(t) = Eext,3D,0 · cos(ωRFt − φS)

with ωRF the cyclotron RF frequency and φS the phase. If a static 3D field is desired, the frequency and
phase can be set to zero. Here, we used OPERA to calculate the median plane field and COMSOL [41] for
the 3D electrostatic fields of the extraction system.

OPAL-CYCL comes with a number of built-in diagnostic devices. One such diagnostic is the OPAL
PROBE. It is a 2D rectangle placed in the 3D simulation space. Whenever a particle crosses the probe plane,
it is registered and the particle data is added to the probe data storage. In section 4 we denote probes with a
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Figure 7. Left: trajectories of the first 3.5 turns (2 MeV) in the simulated central region. Reproduced with permission from [38].
(c) AIMA Right: demonstrated turn separation of 1 cm (edge-to-edge) after placing a single collimator in the first turn. Beam
transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.
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ẋj + q(E + cβ × B)j
∂f
∂Pj

]
,

in the presence of external electromagnetic fields and self-fields,

E = Eext + Eself, (1)

B = Bext + Bself. (2)

Here, x and P are the canonical position and momentum of the particles in the distribution function

f (x, P, t) : (R3M × R3M × R) → R,

and M, c, t, q, and β = v/c, the number of simulation particles, vacuum speed of light, time, charge of a
particle, and velocity scaled by c, respectively. A 4th order Runge–Kutta (RK) integrator is used for time
integration. External fields are evaluated four times per time step. Self-fields are assumed to be constant
during one time step, because they typically vary much slower than the external fields.

The self fields Eself and Bself are calculated on a grid using a fast Fourier transform method. The external
fields Eext and Bext can be calculated with any method of the users choosing and then loaded into OPAL
either as a 2D median plane field (magnetic field only) or a full 3D electromagnetic field map. OPAL uses a
series expansion to calculate off-plane elements from the 2D median plane fields. Furthermore, the 3D
maps are time-varied according to

Eext,3D(t) = Eext,3D,0 · cos(ωRFt − φS)

with ωRF the cyclotron RF frequency and φS the phase. If a static 3D field is desired, the frequency and
phase can be set to zero. Here, we used OPERA to calculate the median plane field and COMSOL [41] for
the 3D electrostatic fields of the extraction system.

OPAL-CYCL comes with a number of built-in diagnostic devices. One such diagnostic is the OPAL
PROBE. It is a 2D rectangle placed in the 3D simulation space. Whenever a particle crosses the probe plane,
it is registered and the particle data is added to the probe data storage. In section 4 we denote probes with a

7

New J. Phys. 24 (2022) 023038 D Winklehner et al

Figure 7. Left: trajectories of the first 3.5 turns (2 MeV) in the simulated central region. Reproduced with permission from [38].
(c) AIMA Right: demonstrated turn separation of 1 cm (edge-to-edge) after placing a single collimator in the first turn. Beam
transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.

3. Methodology

3.1. OPAL simulation code
OPAL [40] is a suite of software for the simulation of particle accelerators, which originates at the Paul
Scherrer Institute, and which is programmed in C++. One of the available flavors is OPAL-CYCL, which is
specifically created to simulate cyclotrons, and which we used for this study. The following is a brief
summary of the description in [39]. OPAL uses the particle-in-cell (PIC) method to solve the collisionless
Vlasov equation

df
dt

= ∂t f +
M∑

j=1

[
∂f
∂xj
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transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.

3. Methodology

3.1. OPAL simulation code
OPAL [40] is a suite of software for the simulation of particle accelerators, which originates at the Paul
Scherrer Institute, and which is programmed in C++. One of the available flavors is OPAL-CYCL, which is
specifically created to simulate cyclotrons, and which we used for this study. The following is a brief
summary of the description in [39]. OPAL uses the particle-in-cell (PIC) method to solve the collisionless
Vlasov equation

df
dt

= ∂t f +
M∑

j=1

[
∂f
∂xj
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transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.
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transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.

3. Methodology

3.1. OPAL simulation code
OPAL [40] is a suite of software for the simulation of particle accelerators, which originates at the Paul
Scherrer Institute, and which is programmed in C++. One of the available flavors is OPAL-CYCL, which is
specifically created to simulate cyclotrons, and which we used for this study. The following is a brief
summary of the description in [39]. OPAL uses the particle-in-cell (PIC) method to solve the collisionless
Vlasov equation

df
dt

= ∂t f +
M∑

j=1

[
∂f
∂xj
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Figure 7. Left: trajectories of the first 3.5 turns (2 MeV) in the simulated central region. Reproduced with permission from [38].
(c) AIMA Right: demonstrated turn separation of 1 cm (edge-to-edge) after placing a single collimator in the first turn. Beam
transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.
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ẋj + q(E + cβ × B)j
∂f
∂Pj

]
,

in the presence of external electromagnetic fields and self-fields,

E = Eext + Eself, (1)

B = Bext + Bself. (2)

Here, x and P are the canonical position and momentum of the particles in the distribution function

f (x, P, t) : (R
3M

× R
3M

× R) → R,

and M, c, t, q, and β = v/c, the number of simulation particles, vacuum speed of light, time, charge of a
particle, and velocity scaled by c, respectively. A 4th order Runge–Kutta (RK) integrator is used for time
integration. External fields are evaluated four times per time step. Self-fields are assumed to be constant
during one time step, because they typically vary much slower than the external fields.

The self fields Eself and Bself are calculated on a grid using a fast Fourier transform method. The external
fields Eext and Bext can be calculated with any method of the users choosing and then loaded into OPAL
either as a 2D median plane field (magnetic field only) or a full 3D electromagnetic field map. OPAL uses a
series expansion to calculate off-plane elements from the 2D median plane fields. Furthermore, the 3D
maps are time-varied according to

Eext,3D(t) = Eext,3D,0 · cos(ωRFt − φS)

with ωRF the cyclotron RF frequency and φS the phase. If a static 3D field is desired, the frequency and
phase can be set to zero. Here, we used OPERA to calculate the median plane field and COMSOL [41] for
the 3D electrostatic fields of the extraction system.

OPAL-CYCL comes with a number of built-in diagnostic devices. One such diagnostic is the OPAL
PROBE. It is a 2D rectangle placed in the 3D simulation space. Whenever a particle crosses the probe plane,
it is registered and the particle data is added to the probe data storage. In section 4 we denote probes with a

7

The Cyclotron Lives On!

Dr Daniel Winklehner

Coming soon: 
 Aug 30th: Advances with TimePix3

 Sep 27th: Neuro-on-chip: Intel’s Loihi 

Interdisciplinary Instrumentation Colloquium

26th July 12pm 50 Auditorium



New J. Phys. 24 (2022) 023038 D Winklehner et al

Figure 7. Left: trajectories of the first 3.5 turns (2 MeV) in the simulated central region. Reproduced with permission from [38].
(c) AIMA Right: demonstrated turn separation of 1 cm (edge-to-edge) after placing a single collimator in the first turn. Beam
transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.
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Figure 7. Left: trajectories of the first 3.5 turns (2 MeV) in the simulated central region. Reproduced with permission from [38].
(c) AIMA Right: demonstrated turn separation of 1 cm (edge-to-edge) after placing a single collimator in the first turn. Beam
transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.
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integration. External fields are evaluated four times per time step. Self-fields are assumed to be constant
during one time step, because they typically vary much slower than the external fields.

The self fields Eself and Bself are calculated on a grid using a fast Fourier transform method. The external
fields Eext and Bext can be calculated with any method of the users choosing and then loaded into OPAL
either as a 2D median plane field (magnetic field only) or a full 3D electromagnetic field map. OPAL uses a
series expansion to calculate off-plane elements from the 2D median plane fields. Furthermore, the 3D
maps are time-varied according to

Eext,3D(t) = Eext,3D,0 · cos(ωRFt − φS)

with ωRF the cyclotron RF frequency and φS the phase. If a static 3D field is desired, the frequency and
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Figure7.Left:trajectoriesofthefirst3.5turns(2MeV)inthesimulatedcentralregion.Reproducedwithpermissionfrom[38].
(c)AIMARight:demonstratedturnseparationof1cm(edge-to-edge)afterplacingasinglecollimatorinthefirstturn.Beam
transmissionfromtheentranceofthespiralinflectortotheprobewas42%.Thissimulationdidnotconsiderspacecharge.

3.Methodology

3.1.OPALsimulationcode
OPAL[40]isasuiteofsoftwareforthesimulationofparticleaccelerators,whichoriginatesatthePaul
ScherrerInstitute,andwhichisprogrammedinC++.OneoftheavailableflavorsisOPAL-CYCL,whichis
specificallycreatedtosimulatecyclotrons,andwhichweusedforthisstudy.Thefollowingisabrief
summaryofthedescriptionin[39].OPALusestheparticle-in-cell(PIC)methodtosolvethecollisionless
Vlasovequation

df
dt

=∂tf+
M∑

j=1

[
∂f
∂xj

ẋj+q(E+cβ×B)j
∂f
∂Pj

]
,

inthepresenceofexternalelectromagneticfieldsandself-fields,

E=Eext+Eself,(1)

B=Bext+Bself.(2)

Here,xandParethecanonicalpositionandmomentumoftheparticlesinthedistributionfunction

f(x,P,t):(R3M×R3M×R)→R,

andM,c,t,q,andβ=v/c,thenumberofsimulationparticles,vacuumspeedoflight,time,chargeofa
particle,andvelocityscaledbyc,respectively.A4thorderRunge–Kutta(RK)integratorisusedfortime
integration.Externalfieldsareevaluatedfourtimespertimestep.Self-fieldsareassumedtobeconstant
duringonetimestep,becausetheytypicallyvarymuchslowerthantheexternalfields.

TheselffieldsEselfandBselfarecalculatedonagridusingafastFouriertransformmethod.Theexternal
fieldsEextandBextcanbecalculatedwithanymethodoftheuserschoosingandthenloadedintoOPAL
eitherasa2Dmedianplanefield(magneticfieldonly)orafull3Delectromagneticfieldmap.OPALusesa
seriesexpansiontocalculateoff-planeelementsfromthe2Dmedianplanefields.Furthermore,the3D
mapsaretime-variedaccordingto

Eext,3D(t)=Eext,3D,0·cos(ωRFt−φS)

withωRFthecyclotronRFfrequencyandφSthephase.Ifastatic3Dfieldisdesired,thefrequencyand
phasecanbesettozero.Here,weusedOPERAtocalculatethemedianplanefieldandCOMSOL[41]for
the3Delectrostaticfieldsoftheextractionsystem.

OPAL-CYCLcomeswithanumberofbuilt-indiagnosticdevices.OnesuchdiagnosticistheOPAL
PROBE.Itisa2Drectangleplacedinthe3Dsimulationspace.Wheneveraparticlecrossestheprobeplane,
itisregisteredandtheparticledataisaddedtotheprobedatastorage.Insection4wedenoteprobeswitha
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Figure 7. Left: trajectories of the first 3.5 turns (2 MeV) in the simulated central region. Reproduced with permission from [38].
(c) AIMA Right: demonstrated turn separation of 1 cm (edge-to-edge) after placing a single collimator in the first turn. Beam
transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.

3. Methodology

3.1. OPAL simulation code
OPAL [40] is a suite of software for the simulation of particle accelerators, which originates at the Paul
Scherrer Institute, and which is programmed in C++. One of the available flavors is OPAL-CYCL, which is
specifically created to simulate cyclotrons, and which we used for this study. The following is a brief
summary of the description in [39]. OPAL uses the particle-in-cell (PIC) method to solve the collisionless
Vlasov equation
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,

in the presence of external electromagnetic fields and self-fields,

E = Eext + Eself, (1)

B = Bext + Bself. (2)

Here, x and P are the canonical position and momentum of the particles in the distribution function

f (x, P, t) : (R3M × R3M × R) → R,

and M, c, t, q, and β = v/c, the number of simulation particles, vacuum speed of light, time, charge of a
particle, and velocity scaled by c, respectively. A 4th order Runge–Kutta (RK) integrator is used for time
integration. External fields are evaluated four times per time step. Self-fields are assumed to be constant
during one time step, because they typically vary much slower than the external fields.

The self fields Eself and Bself are calculated on a grid using a fast Fourier transform method. The external
fields Eext and Bext can be calculated with any method of the users choosing and then loaded into OPAL
either as a 2D median plane field (magnetic field only) or a full 3D electromagnetic field map. OPAL uses a
series expansion to calculate off-plane elements from the 2D median plane fields. Furthermore, the 3D
maps are time-varied according to

Eext,3D(t) = Eext,3D,0 · cos(ωRFt − φS)

with ωRF the cyclotron RF frequency and φS the phase. If a static 3D field is desired, the frequency and
phase can be set to zero. Here, we used OPERA to calculate the median plane field and COMSOL [41] for
the 3D electrostatic fields of the extraction system.

OPAL-CYCL comes with a number of built-in diagnostic devices. One such diagnostic is the OPAL
PROBE. It is a 2D rectangle placed in the 3D simulation space. Whenever a particle crosses the probe plane,
it is registered and the particle data is added to the probe data storage. In section 4 we denote probes with a
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transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.

3. Methodology

3.1. OPAL simulation code
OPAL [40] is a suite of software for the simulation of particle accelerators, which originates at the Paul
Scherrer Institute, and which is programmed in C++. One of the available flavors is OPAL-CYCL, which is
specifically created to simulate cyclotrons, and which we used for this study. The following is a brief
summary of the description in [39]. OPAL uses the particle-in-cell (PIC) method to solve the collisionless
Vlasov equation
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in the presence of external electromagnetic fields and self-fields,
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Here, x and P are the canonical position and momentum of the particles in the distribution function
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and M, c, t, q, and β = v/c, the number of simulation particles, vacuum speed of light, time, charge of a
particle, and velocity scaled by c, respectively. A 4th order Runge–Kutta (RK) integrator is used for time
integration. External fields are evaluated four times per time step. Self-fields are assumed to be constant
during one time step, because they typically vary much slower than the external fields.

The self fields Eself and Bself are calculated on a grid using a fast Fourier transform method. The external
fields Eext and Bext can be calculated with any method of the users choosing and then loaded into OPAL
either as a 2D median plane field (magnetic field only) or a full 3D electromagnetic field map. OPAL uses a
series expansion to calculate off-plane elements from the 2D median plane fields. Furthermore, the 3D
maps are time-varied according to

Eext,3D(t) = Eext,3D,0 · cos(ωRFt − φS)

with ωRF the cyclotron RF frequency and φS the phase. If a static 3D field is desired, the frequency and
phase can be set to zero. Here, we used OPERA to calculate the median plane field and COMSOL [41] for
the 3D electrostatic fields of the extraction system.

OPAL-CYCL comes with a number of built-in diagnostic devices. One such diagnostic is the OPAL
PROBE. It is a 2D rectangle placed in the 3D simulation space. Whenever a particle crosses the probe plane,
it is registered and the particle data is added to the probe data storage. In section 4 we denote probes with a
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Figure7.Left:trajectoriesofthefirst3.5turns(2MeV)inthesimulatedcentralregion.Reproducedwithpermissionfrom[38].
(c)AIMARight:demonstratedturnseparationof1cm(edge-to-edge)afterplacingasinglecollimatorinthefirstturn.Beam
transmissionfromtheentranceofthespiralinflectortotheprobewas42%.Thissimulationdidnotconsiderspacecharge.

3.Methodology

3.1.OPALsimulationcode
OPAL[40]isasuiteofsoftwareforthesimulationofparticleaccelerators,whichoriginatesatthePaul
ScherrerInstitute,andwhichisprogrammedinC++.OneoftheavailableflavorsisOPAL-CYCL,whichis
specificallycreatedtosimulatecyclotrons,andwhichweusedforthisstudy.Thefollowingisabrief
summaryofthedescriptionin[39].OPALusestheparticle-in-cell(PIC)methodtosolvethecollisionless
Vlasovequation
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,

inthepresenceofexternalelectromagneticfieldsandself-fields,

E=Eext+Eself,(1)

B=Bext+Bself.(2)

Here,xandParethecanonicalpositionandmomentumoftheparticlesinthedistributionfunction

f(x,P,t):(R3M×R3M×R)→R,

andM,c,t,q,andβ=v/c,thenumberofsimulationparticles,vacuumspeedoflight,time,chargeofa
particle,andvelocityscaledbyc,respectively.A4thorderRunge–Kutta(RK)integratorisusedfortime
integration.Externalfieldsareevaluatedfourtimespertimestep.Self-fieldsareassumedtobeconstant
duringonetimestep,becausetheytypicallyvarymuchslowerthantheexternalfields.

TheselffieldsEselfandBselfarecalculatedonagridusingafastFouriertransformmethod.Theexternal
fieldsEextandBextcanbecalculatedwithanymethodoftheuserschoosingandthenloadedintoOPAL
eitherasa2Dmedianplanefield(magneticfieldonly)orafull3Delectromagneticfieldmap.OPALusesa
seriesexpansiontocalculateoff-planeelementsfromthe2Dmedianplanefields.Furthermore,the3D
mapsaretime-variedaccordingto

Eext,3D(t)=Eext,3D,0·cos(ωRFt−φS)

withωRFthecyclotronRFfrequencyandφSthephase.Ifastatic3Dfieldisdesired,thefrequencyand
phasecanbesettozero.Here,weusedOPERAtocalculatethemedianplanefieldandCOMSOL[41]for
the3Delectrostaticfieldsoftheextractionsystem.

OPAL-CYCLcomeswithanumberofbuilt-indiagnosticdevices.OnesuchdiagnosticistheOPAL
PROBE.Itisa2Drectangleplacedinthe3Dsimulationspace.Wheneveraparticlecrossestheprobeplane,
itisregisteredandtheparticledataisaddedtotheprobedatastorage.Insection4wedenoteprobeswitha

7

NewJ.Phys.24(2022)023038DWinklehneretal

Figure7.Left:trajectoriesofthefirst3.5turns(2MeV)inthesimulatedcentralregion.Reproducedwithpermissionfrom[38].
(c)AIMARight:demonstratedturnseparationof1cm(edge-to-edge)afterplacingasinglecollimatorinthefirstturn.Beam
transmissionfromtheentranceofthespiralinflectortotheprobewas42%.Thissimulationdidnotconsiderspacecharge.

3.Methodology

3.1.OPALsimulationcode
OPAL[40]isasuiteofsoftwareforthesimulationofparticleaccelerators,whichoriginatesatthePaul
ScherrerInstitute,andwhichisprogrammedinC++.OneoftheavailableflavorsisOPAL-CYCL,whichis
specificallycreatedtosimulatecyclotrons,andwhichweusedforthisstudy.Thefollowingisabrief
summaryofthedescriptionin[39].OPALusestheparticle-in-cell(PIC)methodtosolvethecollisionless
Vlasovequation

df
dt

=∂tf+
M∑

j=1

[
∂f
∂xj

ẋj+q(E+cβ×B)j
∂f
∂Pj

]
,

inthepresenceofexternalelectromagneticfieldsandself-fields,

E=Eext+Eself,(1)

B=Bext+Bself.(2)

Here,xandParethecanonicalpositionandmomentumoftheparticlesinthedistributionfunction

f(x,P,t):(R3M×R3M×R)→R,

andM,c,t,q,andβ=v/c,thenumberofsimulationparticles,vacuumspeedoflight,time,chargeofa
particle,andvelocityscaledbyc,respectively.A4thorderRunge–Kutta(RK)integratorisusedfortime
integration.Externalfieldsareevaluatedfourtimespertimestep.Self-fieldsareassumedtobeconstant
duringonetimestep,becausetheytypicallyvarymuchslowerthantheexternalfields.

TheselffieldsEselfandBselfarecalculatedonagridusingafastFouriertransformmethod.Theexternal
fieldsEextandBextcanbecalculatedwithanymethodoftheuserschoosingandthenloadedintoOPAL
eitherasa2Dmedianplanefield(magneticfieldonly)orafull3Delectromagneticfieldmap.OPALusesa
seriesexpansiontocalculateoff-planeelementsfromthe2Dmedianplanefields.Furthermore,the3D
mapsaretime-variedaccordingto

Eext,3D(t)=Eext,3D,0·cos(ωRFt−φS)

withωRFthecyclotronRFfrequencyandφSthephase.Ifastatic3Dfieldisdesired,thefrequencyand
phasecanbesettozero.Here,weusedOPERAtocalculatethemedianplanefieldandCOMSOL[41]for
the3Delectrostaticfieldsoftheextractionsystem.

OPAL-CYCLcomeswithanumberofbuilt-indiagnosticdevices.OnesuchdiagnosticistheOPAL
PROBE.Itisa2Drectangleplacedinthe3Dsimulationspace.Wheneveraparticlecrossestheprobeplane,
itisregisteredandtheparticledataisaddedtotheprobedatastorage.Insection4wedenoteprobeswitha

7

NewJ.Phys.24(2022)023038DWinklehneretal

Figure7.Left:trajectoriesofthefirst3.5turns(2MeV)inthesimulatedcentralregion.Reproducedwithpermissionfrom[38].
(c)AIMARight:demonstratedturnseparationof1cm(edge-to-edge)afterplacingasinglecollimatorinthefirstturn.Beam
transmissionfromtheentranceofthespiralinflectortotheprobewas42%.Thissimulationdidnotconsiderspacecharge.

3.Methodology

3.1.OPALsimulationcode
OPAL[40]isasuiteofsoftwareforthesimulationofparticleaccelerators,whichoriginatesatthePaul
ScherrerInstitute,andwhichisprogrammedinC++.OneoftheavailableflavorsisOPAL-CYCL,whichis
specificallycreatedtosimulatecyclotrons,andwhichweusedforthisstudy.Thefollowingisabrief
summaryofthedescriptionin[39].OPALusestheparticle-in-cell(PIC)methodtosolvethecollisionless
Vlasovequation

df
dt

=∂tf+
M∑

j=1

[
∂f
∂xj
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Figure 7. Left: trajectories of the first 3.5 turns (2 MeV) in the simulated central region. Reproduced with permission from [38].
(c) AIMA Right: demonstrated turn separation of 1 cm (edge-to-edge) after placing a single collimator in the first turn. Beam
transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.

3. Methodology

3.1. OPAL simulation code
OPAL [40] is a suite of software for the simulation of particle accelerators, which originates at the Paul
Scherrer Institute, and which is programmed in C++. One of the available flavors is OPAL-CYCL, which is
specifically created to simulate cyclotrons, and which we used for this study. The following is a brief
summary of the description in [39]. OPAL uses the particle-in-cell (PIC) method to solve the collisionless
Vlasov equation

df
dt

= ∂t f +
M∑

j=1

[
∂f
∂xj

ẋj + q(E + cβ × B)j
∂f
∂Pj

]
,

in the presence of external electromagnetic fields and self-fields,

E = Eext + Eself, (1)

B = Bext + Bself. (2)

Here, x and P are the canonical position and momentum of the particles in the distribution function

f (x, P, t) : (R3M × R3M × R) → R,

and M, c, t, q, and β = v/c, the number of simulation particles, vacuum speed of light, time, charge of a
particle, and velocity scaled by c, respectively. A 4th order Runge–Kutta (RK) integrator is used for time
integration. External fields are evaluated four times per time step. Self-fields are assumed to be constant
during one time step, because they typically vary much slower than the external fields.

The self fields Eself and Bself are calculated on a grid using a fast Fourier transform method. The external
fields Eext and Bext can be calculated with any method of the users choosing and then loaded into OPAL
either as a 2D median plane field (magnetic field only) or a full 3D electromagnetic field map. OPAL uses a
series expansion to calculate off-plane elements from the 2D median plane fields. Furthermore, the 3D
maps are time-varied according to

Eext,3D(t) = Eext,3D,0 · cos(ωRFt − φS)

with ωRF the cyclotron RF frequency and φS the phase. If a static 3D field is desired, the frequency and
phase can be set to zero. Here, we used OPERA to calculate the median plane field and COMSOL [41] for
the 3D electrostatic fields of the extraction system.

OPAL-CYCL comes with a number of built-in diagnostic devices. One such diagnostic is the OPAL
PROBE. It is a 2D rectangle placed in the 3D simulation space. Whenever a particle crosses the probe plane,
it is registered and the particle data is added to the probe data storage. In section 4 we denote probes with a
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Figure 7. Left: trajectories of the first 3.5 turns (2 MeV) in the simulated central region. Reproduced with permission from [38].
(c) AIMA Right: demonstrated turn separation of 1 cm (edge-to-edge) after placing a single collimator in the first turn. Beam
transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.
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ẋj + q(E + cβ × B)j
∂f
∂Pj

]
,

in the presence of external electromagnetic fields and self-fields,

E = Eext + Eself, (1)

B = Bext + Bself. (2)

Here, x and P are the canonical position and momentum of the particles in the distribution function

f (x, P, t) : (R3M × R3M × R) → R,

and M, c, t, q, and β = v/c, the number of simulation particles, vacuum speed of light, time, charge of a
particle, and velocity scaled by c, respectively. A 4th order Runge–Kutta (RK) integrator is used for time
integration. External fields are evaluated four times per time step. Self-fields are assumed to be constant
during one time step, because they typically vary much slower than the external fields.

The self fields Eself and Bself are calculated on a grid using a fast Fourier transform method. The external
fields Eext and Bext can be calculated with any method of the users choosing and then loaded into OPAL
either as a 2D median plane field (magnetic field only) or a full 3D electromagnetic field map. OPAL uses a
series expansion to calculate off-plane elements from the 2D median plane fields. Furthermore, the 3D
maps are time-varied according to

Eext,3D(t) = Eext,3D,0 · cos(ωRFt − φS)

with ωRF the cyclotron RF frequency and φS the phase. If a static 3D field is desired, the frequency and
phase can be set to zero. Here, we used OPERA to calculate the median plane field and COMSOL [41] for
the 3D electrostatic fields of the extraction system.

OPAL-CYCL comes with a number of built-in diagnostic devices. One such diagnostic is the OPAL
PROBE. It is a 2D rectangle placed in the 3D simulation space. Whenever a particle crosses the probe plane,
it is registered and the particle data is added to the probe data storage. In section 4 we denote probes with a

7

New J. Phys. 24 (2022) 023038 D Winklehner et al

Figure 7. Left: trajectories of the first 3.5 turns (2 MeV) in the simulated central region. Reproduced with permission from [38].
(c) AIMA Right: demonstrated turn separation of 1 cm (edge-to-edge) after placing a single collimator in the first turn. Beam
transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.

3. Methodology

3.1. OPAL simulation code
OPAL [40] is a suite of software for the simulation of particle accelerators, which originates at the Paul
Scherrer Institute, and which is programmed in C++. One of the available flavors is OPAL-CYCL, which is
specifically created to simulate cyclotrons, and which we used for this study. The following is a brief
summary of the description in [39]. OPAL uses the particle-in-cell (PIC) method to solve the collisionless
Vlasov equation

df
dt

= ∂t f +
M∑

j=1

[
∂f
∂xj
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ẋj + q(E + cβ × B)j
∂f
∂Pj

]
,

in the presence of external electromagnetic fields and self-fields,

E = Eext + Eself, (1)

B = Bext + Bself. (2)

Here, x and P are the canonical position and momentum of the particles in the distribution function

f (x, P, t) : (R
3M

× R
3M

× R) → R,

and M, c, t, q, and β = v/c, the number of simulation particles, vacuum speed of light, time, charge of a
particle, and velocity scaled by c, respectively. A 4th order Runge–Kutta (RK) integrator is used for time
integration. External fields are evaluated four times per time step. Self-fields are assumed to be constant
during one time step, because they typically vary much slower than the external fields.

The self fields Eself and Bself are calculated on a grid using a fast Fourier transform method. The external
fields Eext and Bext can be calculated with any method of the users choosing and then loaded into OPAL
either as a 2D median plane field (magnetic field only) or a full 3D electromagnetic field map. OPAL uses a
series expansion to calculate off-plane elements from the 2D median plane fields. Furthermore, the 3D
maps are time-varied according to

Eext,3D(t) = Eext,3D,0 · cos(ωRFt − φS)

with ωRF the cyclotron RF frequency and φS the phase. If a static 3D field is desired, the frequency and
phase can be set to zero. Here, we used OPERA to calculate the median plane field and COMSOL [41] for
the 3D electrostatic fields of the extraction system.

OPAL-CYCL comes with a number of built-in diagnostic devices. One such diagnostic is the OPAL
PROBE. It is a 2D rectangle placed in the 3D simulation space. Whenever a particle crosses the probe plane,
it is registered and the particle data is added to the probe data storage. In section 4 we denote probes with a

7

New J. Phys. 24 (2022) 023038 D Winklehner et al

Figure 7. Left: trajectories of the first 3.5 turns (2 MeV) in the simulated central region. Reproduced with permission from [38].
(c) AIMA Right: demonstrated turn separation of 1 cm (edge-to-edge) after placing a single collimator in the first turn. Beam
transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.

3. Methodology

3.1. OPAL simulation code
OPAL [40] is a suite of software for the simulation of particle accelerators, which originates at the Paul
Scherrer Institute, and which is programmed in C++. One of the available flavors is OPAL-CYCL, which is
specifically created to simulate cyclotrons, and which we used for this study. The following is a brief
summary of the description in [39]. OPAL uses the particle-in-cell (PIC) method to solve the collisionless
Vlasov equation

df
dt

= ∂t f +
M∑

j=1

[
∂f
∂xj
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maps are time-varied according to
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the 3D electrostatic fields of the extraction system.

OPAL-CYCL comes with a number of built-in diagnostic devices. One such diagnostic is the OPAL
PROBE. It is a 2D rectangle placed in the 3D simulation space. Whenever a particle crosses the probe plane,
it is registered and the particle data is added to the probe data storage. In section 4 we denote probes with a
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Figure 7. Left: trajectories of the first 3.5 turns (2 MeV) in the simulated central region. Reproduced with permission from [38].
(c) AIMA Right: demonstrated turn separation of 1 cm (edge-to-edge) after placing a single collimator in the first turn. Beam
transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.
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(c)AIMARight:demonstratedturnseparationof1cm(edge-to-edge)afterplacingasinglecollimatorinthefirstturn.Beam
transmissionfromtheentranceofthespiralinflectortotheprobewas42%.Thissimulationdidnotconsiderspacecharge.
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ScherrerInstitute,andwhichisprogrammedinC++.OneoftheavailableflavorsisOPAL-CYCL,whichis
specificallycreatedtosimulatecyclotrons,andwhichweusedforthisstudy.Thefollowingisabrief
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f(x,P,t):(R3M×R3M×R)→R,

andM,c,t,q,andβ=v/c,thenumberofsimulationparticles,vacuumspeedoflight,time,chargeofa
particle,andvelocityscaledbyc,respectively.A4thorderRunge–Kutta(RK)integratorisusedfortime
integration.Externalfieldsareevaluatedfourtimespertimestep.Self-fieldsareassumedtobeconstant
duringonetimestep,becausetheytypicallyvarymuchslowerthantheexternalfields.

TheselffieldsEselfandBselfarecalculatedonagridusingafastFouriertransformmethod.Theexternal
fieldsEextandBextcanbecalculatedwithanymethodoftheuserschoosingandthenloadedintoOPAL
eitherasa2Dmedianplanefield(magneticfieldonly)orafull3Delectromagneticfieldmap.OPALusesa
seriesexpansiontocalculateoff-planeelementsfromthe2Dmedianplanefields.Furthermore,the3D
mapsaretime-variedaccordingto

Eext,3D(t)=Eext,3D,0·cos(ωRFt−φS)

withωRFthecyclotronRFfrequencyandφSthephase.Ifastatic3Dfieldisdesired,thefrequencyand
phasecanbesettozero.Here,weusedOPERAtocalculatethemedianplanefieldandCOMSOL[41]for
the3Delectrostaticfieldsoftheextractionsystem.

OPAL-CYCLcomeswithanumberofbuilt-indiagnosticdevices.OnesuchdiagnosticistheOPAL
PROBE.Itisa2Drectangleplacedinthe3Dsimulationspace.Wheneveraparticlecrossestheprobeplane,
itisregisteredandtheparticledataisaddedtotheprobedatastorage.Insection4wedenoteprobeswitha
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ẋj+q(E+cβ×B)j
∂f
∂Pj

]
,

inthepresenceofexternalelectromagneticfieldsandself-fields,

E=Eext+Eself,(1)

B=Bext+Bself.(2)

Here,xandParethecanonicalpositionandmomentumoftheparticlesinthedistributionfunction

f(x,P,t):(R3M×R3M×R)→R,

andM,c,t,q,andβ=v/c,thenumberofsimulationparticles,vacuumspeedoflight,time,chargeofa
particle,andvelocityscaledbyc,respectively.A4thorderRunge–Kutta(RK)integratorisusedfortime
integration.Externalfieldsareevaluatedfourtimespertimestep.Self-fieldsareassumedtobeconstant
duringonetimestep,becausetheytypicallyvarymuchslowerthantheexternalfields.

TheselffieldsEselfandBselfarecalculatedonagridusingafastFouriertransformmethod.Theexternal
fieldsEextandBextcanbecalculatedwithanymethodoftheuserschoosingandthenloadedintoOPAL
eitherasa2Dmedianplanefield(magneticfieldonly)orafull3Delectromagneticfieldmap.OPALusesa
seriesexpansiontocalculateoff-planeelementsfromthe2Dmedianplanefields.Furthermore,the3D
mapsaretime-variedaccordingto

Eext,3D(t)=Eext,3D,0·cos(ωRFt−φS)

withωRFthecyclotronRFfrequencyandφSthephase.Ifastatic3Dfieldisdesired,thefrequencyand
phasecanbesettozero.Here,weusedOPERAtocalculatethemedianplanefieldandCOMSOL[41]for
the3Delectrostaticfieldsoftheextractionsystem.

OPAL-CYCLcomeswithanumberofbuilt-indiagnosticdevices.OnesuchdiagnosticistheOPAL
PROBE.Itisa2Drectangleplacedinthe3Dsimulationspace.Wheneveraparticlecrossestheprobeplane,
itisregisteredandtheparticledataisaddedtotheprobedatastorage.Insection4wedenoteprobeswitha

7

NewJ.Phys.24(2022)023038DWinklehneretal

Figure7.Left:trajectoriesofthefirst3.5turns(2MeV)inthesimulatedcentralregion.Reproducedwithpermissionfrom[38].
(c)AIMARight:demonstratedturnseparationof1cm(edge-to-edge)afterplacingasinglecollimatorinthefirstturn.Beam
transmissionfromtheentranceofthespiralinflectortotheprobewas42%.Thissimulationdidnotconsiderspacecharge.

3.Methodology

3.1.OPALsimulationcode
OPAL[40]isasuiteofsoftwareforthesimulationofparticleaccelerators,whichoriginatesatthePaul
ScherrerInstitute,andwhichisprogrammedinC++.OneoftheavailableflavorsisOPAL-CYCL,whichis
specificallycreatedtosimulatecyclotrons,andwhichweusedforthisstudy.Thefollowingisabrief
summaryofthedescriptionin[39].OPALusestheparticle-in-cell(PIC)methodtosolvethecollisionless
Vlasovequation

df
dt

=∂tf+
M∑

j=1

[
∂f
∂xj
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ẋj+q(E+cβ×B)j
∂f
∂Pj

]
,

inthepresenceofexternalelectromagneticfieldsandself-fields,

E=Eext+Eself,(1)

B=Bext+Bself.(2)

Here,xandParethecanonicalpositionandmomentumoftheparticlesinthedistributionfunction

f(x,P,t):(R
3M

×R
3M

×R)→R,

andM,c,t,q,andβ=v/c,thenumberofsimulationparticles,vacuumspeedoflight,time,chargeofa
particle,andvelocityscaledbyc,respectively.A4thorderRunge–Kutta(RK)integratorisusedfortime
integration.Externalfieldsareevaluatedfourtimespertimestep.Self-fieldsareassumedtobeconstant
duringonetimestep,becausetheytypicallyvarymuchslowerthantheexternalfields.

TheselffieldsEselfandBselfarecalculatedonagridusingafastFouriertransformmethod.Theexternal
fieldsEextandBextcanbecalculatedwithanymethodoftheuserschoosingandthenloadedintoOPAL
eitherasa2Dmedianplanefield(magneticfieldonly)orafull3Delectromagneticfieldmap.OPALusesa
seriesexpansiontocalculateoff-planeelementsfromthe2Dmedianplanefields.Furthermore,the3D
mapsaretime-variedaccordingto

Eext,3D(t)=Eext,3D,0·cos(ωRFt−φS)

withωRFthecyclotronRFfrequencyandφSthephase.Ifastatic3Dfieldisdesired,thefrequencyand
phasecanbesettozero.Here,weusedOPERAtocalculatethemedianplanefieldandCOMSOL[41]for
the3Delectrostaticfieldsoftheextractionsystem.

OPAL-CYCLcomeswithanumberofbuilt-indiagnosticdevices.OnesuchdiagnosticistheOPAL
PROBE.Itisa2Drectangleplacedinthe3Dsimulationspace.Wheneveraparticlecrossestheprobeplane,
itisregisteredandtheparticledataisaddedtotheprobedatastorage.Insection4wedenoteprobeswitha

7

NewJ.Phys.24(2022)023038DWinklehneretal

Figure7.Left:trajectoriesofthefirst3.5turns(2MeV)inthesimulatedcentralregion.Reproducedwithpermissionfrom[38].
(c)AIMARight:demonstratedturnseparationof1cm(edge-to-edge)afterplacingasinglecollimatorinthefirstturn.Beam
transmissionfromtheentranceofthespiralinflectortotheprobewas42%.Thissimulationdidnotconsiderspacecharge.

3.Methodology

3.1.OPALsimulationcode
OPAL[40]isasuiteofsoftwareforthesimulationofparticleaccelerators,whichoriginatesatthePaul
ScherrerInstitute,andwhichisprogrammedinC++.OneoftheavailableflavorsisOPAL-CYCL,whichis
specificallycreatedtosimulatecyclotrons,andwhichweusedforthisstudy.Thefollowingisabrief
summaryofthedescriptionin[39].OPALusestheparticle-in-cell(PIC)methodtosolvethecollisionless
Vlasovequation

df
dt

=∂tf+
M∑

j=1

[
∂f
∂xj
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Figure 7. Left: trajectories of the first 3.5 turns (2 MeV) in the simulated central region. Reproduced with permission from [38].
(c) AIMA Right: demonstrated turn separation of 1 cm (edge-to-edge) after placing a single collimator in the first turn. Beam
transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.

3. Methodology

3.1. OPAL simulation code
OPAL [40] is a suite of software for the simulation of particle accelerators, which originates at the Paul
Scherrer Institute, and which is programmed in C++. One of the available flavors is OPAL-CYCL, which is
specifically created to simulate cyclotrons, and which we used for this study. The following is a brief
summary of the description in [39]. OPAL uses the particle-in-cell (PIC) method to solve the collisionless
Vlasov equation

df
dt

= ∂t f +
M∑

j=1

[
∂f
∂xj

ẋj + q(E + cβ × B)j
∂f
∂Pj

]
,

in the presence of external electromagnetic fields and self-fields,

E = Eext + Eself, (1)

B = Bext + Bself. (2)

Here, x and P are the canonical position and momentum of the particles in the distribution function

f (x, P, t) : (R3M × R3M × R) → R,

and M, c, t, q, and β = v/c, the number of simulation particles, vacuum speed of light, time, charge of a
particle, and velocity scaled by c, respectively. A 4th order Runge–Kutta (RK) integrator is used for time
integration. External fields are evaluated four times per time step. Self-fields are assumed to be constant
during one time step, because they typically vary much slower than the external fields.

The self fields Eself and Bself are calculated on a grid using a fast Fourier transform method. The external
fields Eext and Bext can be calculated with any method of the users choosing and then loaded into OPAL
either as a 2D median plane field (magnetic field only) or a full 3D electromagnetic field map. OPAL uses a
series expansion to calculate off-plane elements from the 2D median plane fields. Furthermore, the 3D
maps are time-varied according to

Eext,3D(t) = Eext,3D,0 · cos(ωRFt − φS)

with ωRF the cyclotron RF frequency and φS the phase. If a static 3D field is desired, the frequency and
phase can be set to zero. Here, we used OPERA to calculate the median plane field and COMSOL [41] for
the 3D electrostatic fields of the extraction system.

OPAL-CYCL comes with a number of built-in diagnostic devices. One such diagnostic is the OPAL
PROBE. It is a 2D rectangle placed in the 3D simulation space. Whenever a particle crosses the probe plane,
it is registered and the particle data is added to the probe data storage. In section 4 we denote probes with a
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(c) AIMA Right: demonstrated turn separation of 1 cm (edge-to-edge) after placing a single collimator in the first turn. Beam
transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.
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ẋj + q(E + cβ × B)j
∂f
∂Pj

]
,

in the presence of external electromagnetic fields and self-fields,

E = Eext + Eself, (1)

B = Bext + Bself. (2)

Here, x and P are the canonical position and momentum of the particles in the distribution function

f (x, P, t) : (R3M × R3M × R) → R,

and M, c, t, q, and β = v/c, the number of simulation particles, vacuum speed of light, time, charge of a
particle, and velocity scaled by c, respectively. A 4th order Runge–Kutta (RK) integrator is used for time
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ẋj + q(E + cβ × B)j
∂f
∂Pj

]
,

in the presence of external electromagnetic fields and self-fields,

E = Eext + Eself, (1)

B = Bext + Bself. (2)

Here, x and P are the canonical position and momentum of the particles in the distribution function

f (x, P, t) : (R3M × R3M × R) → R,

and M, c, t, q, and β = v/c, the number of simulation particles, vacuum speed of light, time, charge of a
particle, and velocity scaled by c, respectively. A 4th order Runge–Kutta (RK) integrator is used for time
integration. External fields are evaluated four times per time step. Self-fields are assumed to be constant
during one time step, because they typically vary much slower than the external fields.

The self fields Eself and Bself are calculated on a grid using a fast Fourier transform method. The external
fields Eext and Bext can be calculated with any method of the users choosing and then loaded into OPAL
either as a 2D median plane field (magnetic field only) or a full 3D electromagnetic field map. OPAL uses a
series expansion to calculate off-plane elements from the 2D median plane fields. Furthermore, the 3D
maps are time-varied according to

Eext,3D(t) = Eext,3D,0 · cos(ωRFt − φS)

with ωRF the cyclotron RF frequency and φS the phase. If a static 3D field is desired, the frequency and
phase can be set to zero. Here, we used OPERA to calculate the median plane field and COMSOL [41] for
the 3D electrostatic fields of the extraction system.

OPAL-CYCL comes with a number of built-in diagnostic devices. One such diagnostic is the OPAL
PROBE. It is a 2D rectangle placed in the 3D simulation space. Whenever a particle crosses the probe plane,
it is registered and the particle data is added to the probe data storage. In section 4 we denote probes with a

7

New J. Phys. 24 (2022) 023038 D Winklehner et al

Figure 7. Left: trajectories of the first 3.5 turns (2 MeV) in the simulated central region. Reproduced with permission from [38].
(c) AIMA Right: demonstrated turn separation of 1 cm (edge-to-edge) after placing a single collimator in the first turn. Beam
transmission from the entrance of the spiral inflector to the probe was 42%. This simulation did not consider space charge.

3. Methodology

3.1. OPAL simulation code
OPAL [40] is a suite of software for the simulation of particle accelerators, which originates at the Paul
Scherrer Institute, and which is programmed in C++. One of the available flavors is OPAL-CYCL, which is
specifically created to simulate cyclotrons, and which we used for this study. The following is a brief
summary of the description in [39]. OPAL uses the particle-in-cell (PIC) method to solve the collisionless
Vlasov equation

df
dt

= ∂t f +
M∑

j=1

[
∂f
∂xj
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The HCHC (High Current H2+ Cyclotron) family allows the fabrication of 
cost-effective, compact cyclotrons from 1.5-60 MeV/amu. Accelerating 
H2+, injecting through an RFQ embedded axially in the cyclotron yoke, 
and vortex motion allows a beam current of 10 mA: a x10 increase over 
commercial cyclotrons.Building the 1st 1.5 MeV/amu prototype is 
underway. Beyond neutrino physics, the HCHC cyclotrons can be 
applied in medical isotope production and fusion-relevant material 
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