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Case Study I:  28 nm implementation for CMS Phase III R&D

– reconfigurable NN for data filtering in-pixel
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LHC Grand challenge
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• Extreme Environment

Total ionizing dose : ~ 1 Grad

Single event effects : Flux of > 20 MeV hadrons = 

10 MHz/cm2. Target 1 error every ~10s

• Data Volume

1 billion sensor channels and 1 billion 

collisions/sec producing raw data at >Pb/s

More than 99.9% of data generated does not 

provide useful physics information

• Occupancy ~ 3 GHz/cm2 in vertex detectors

Requires more granular detectors → increasing 

data volume, power consumption, more complex 

on-detector electronics. Per chip ~ 1Mpixels; > 1 

Tbps of zero-suppressed data.   



What is the best approach?

• Data compression

• Data filtering

• Data featurization

Where should the algorithm be implemented?

• Near sensor: AI/ML mixed-foundry chiplet:

Standalone general purpose

Does not overcome IO bottleneck (1 Tbps off-sensor)

• Edge of sensor/ Readout integrated circuit: 

Easier implementation (larger area and power), optimally utilizes chip bandwidth

On-chip transfer

• In-pixel: At the data source:

Minimizes data movement

Power and area constraint

Edge computing
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Design Methodology: Physics driven hardware co-design
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• Algorithm development based on Physics data

• hls4ml simplifies the design of on-chip ML accelerators

| hls4ml directives | << | HLS directives |

C++ library of ML functionalities optimized for HLS

• TMR4sv_hls: Triple Modular Redundancy tool for System Verilog & HLS



LHC Pixel detector 
• 4 layers closest to the beam pipe

• Vertex position for high momentum 
tracks (smaller pixels => higher 

resolution)

• ~5B pixels across ~30,000 chips 

• R&D for Phase II started in 2012; 

chips in production ~ 2022

• 20B pixels; starting R&D 2022 

(expected upgrade in 2034)
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Technology 65nm CMOS 28 nm  CMOS

Pixel size 50x50 𝛍m2 25x25 𝛍m2

Pixels 394x400 = 157.6k 788x800 = 0.63M

Detection threshold ~1000e- ~500e-

Hit rate < 3GHz/cm2 < 3GHz/cm2

Trigger rate 1MHz 40MHz (?)

Digital buffer 12.5 𝛍s (?) 

Readout data rate 1-4 links @ 1.28Gbps 1 photonic link @ 30 Gbps

Radiation tolerance 500Mrad at -15oC 1Grad at -15oC

Power 1 W /cm2 1 W /cm2



Compact algorithms for data reduction through featurization

• Predict physics information (x,y,θ,ɸ) and meaningful error (UQ) on particle 

position, angle

• Potential for reduction of track seeds ⟶ saves time & computing resources 

down the line

Concept: Real-time tracking

Simulation

link

Cluster shapes and Pulse information for filtering out low pT particles

• NN classifier identifies and saves clusters from tracks with pT > 2 GeV 

• ≥ 95% data reduction by saving only high pT

• Low power implementation

Silicon pixel sensors
12.5x50 µm pitch, 100 µm thick

Technology development to enable on-sensor computing

• Ultra low power in-memory compute chips 

• 3D integration for optimized data processing

• Leverage emerging technologies such as novel CMOS compatible memristors

Proton-proton

collisions at 

40 MHz
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https://zenodo.org/record/7331128


Algorithm development for momentum classification
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Smart pixel dataset
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Dataset available 

on zenodo

• State-of-the-art dataset for developing algorithms for 

implementation on-ASIC

• Simulated MIP interactions in a futue pixel detector

Located at radius of 30 mm

3.8 T magnetic field

50 x 12.5 µm pixels 

100 µm thick sensor

Time steps of 250 picoseconds

• Use track parameters taken from CMS data in Run 2

Simulation with time-sliced PixelAV, including E field and 

weighting field

Morris Swartz

https://zenodo.org/record/7331128
http://cds.cern.ch/record/687440/files/note02_027.pdf?version=1


• 1/3rd of all clusters are 

associated with tracks

• Untracked clusters are mainly 

due to loopers, broken clusters 
& other backgrounds

• Low pT positively charged 
tracks increase cluster size

• Low pT negatively charged 
tracks decrease cluster size

• Strong correlation between 
y-size and y-local on the 

module

• Multi-level classifier for 
selecting high momentum 
tracks

Co-relation between cluster shape and momentum
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• Only hits that are reconstructed into 

tracks are simulated 

• Rejecting lower pT hits (often single 

pixel) will increase the fraction 

rejected

• Generating data sets associated with 

untracked clusters, noise hits and 

other background

Data filtering to reject 95% of data
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< 0.2 GeV ≥ 6%

< 0.5 GeV ≥ 36%

< 1 GeV ≥ 70%

< 2 GeV ≥ 94%

Conservatively reject:

Morris Swartz, Jennet Dickinson



• Model 1: y-size: count no. of pixels with hit

• Model 2: y-profile: add total charge 
accumulated across all pixels in the y-

direction

• Model 3: y-profile with timing: add total 

charge accumulated across all pixels in the 

y-direction every 250ps – 8 data points 

over 4ns of charge integration
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Algorithm performance

Jieun Yoo



Algorithm co-design with frontend architecture
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• Lowering noise threshold increases 

slightly improves efficiency

• Increasing no. of bits does not 

improve efficiency

Jieun Yoo



• Sensor pixels can be divided into various 

zones to exploit the correlation with y_local 

• The algorithm is reprogrammable and 

weights are trained based on position 

dependent data

• 2×2 cm sensor module: 3200 rows & 100 cols 

• Every region needs minimum 16 rows and 

maximum ~ 64 rows

• 16×16 sensor pixel = 8×32 ROIC pixels

Retraining local algorithms 
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y_local: zone 0

y_local: zone 11

superpixel



SuperPixel concept: Algorithm co-design
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25 m

25 m

625 m2

Single pixel area Analog area
for 4 pixels

V1: 625 m2

V2: 825 m2

V1: 64(625×4 – 625) = 120,000 m2

V2: 64(625×4 – 825) = 104,000 m2

Total Digital area
for 256 pixels



• Original model is too 

large for the given area

• Exploring area 

reduction without 

significantly decreasing 

the model accuracy

• Reducing the number 

of neurons in the first 
hidden layer and the 

bit-width of the weights 

and activation function

Design space exploration for hardware co-design
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Giuseppe Di Guglielmo

Target digital area V1= 120,000 m2

Target digital area V2 = 104,000 m2



• Compact: Reduce size by reducing the number of parameters

• Energy Efficient: Eliminate clocking and make the design fully combinatorial

• No. of operations: 75 GOPS (6b INT) per super pixel: 0.5 TOPS/mm2 : 200 TOPS/chip

Design space exploration for hardware co-design
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Readout Integrated Circuit: Traditional Implementation
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Front-end pixel architecture: Synchronous ADC

• Signal processing within 1 BXClk cycle (25 ns)

• Insensitive to pileup
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• 25µm  × 25µm pixel AC 
coupled ADC 

• 2-bit ADC:

→ version 1: Single ended

→ version 2: Differential

• Auto zero in every pixel 

for threshold correction

Front-end pixel architecture
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CSA 2-bit flash ADC

CSA 2-bit flash ADC

Benjamin Parpillon4/26/2023 Farah Fahim | In-Pixel AI



Charge Sensitive Preamplifier

21

Result Mode 1 Mode 2 unit

Power 3 4.2 𝜇W

ENC 61 52 e-

Charge sensitivity 40.85 42.3 𝜇V/e-

Phase Margin 65 78 degree

Dynamic Range 13 13 ke-

- Regulated cascode for gain stage
- Detector Capacitance 30fF
- Leakage current compensation (up to 50 nA)

Benjamin Parpillon4/26/2023 Farah Fahim | In-Pixel AI



• AC coupled

• Auto-zero for offset 

cancellation

• Exploring an alternate 

clockless architecture

Comparator

Result v1 v2 unit comments

Power 3.7 5.2 𝜇W Per pixel

Total Equivalent 

Dispersion

Charge 90 100 e-

Includes:

• ENC
• Qth

• Baseline 

fluctuation
• kickback

Min Threshold 430 475 e- 4.75 σ

Analog Area 678 845 𝜇m2

Benjamin Parpillon4/26/2023 Farah Fahim | In-Pixel AI22



Grouping 4 pixels to create an analog island

DIGITAL
• DNWELL
• Logic and Registers: SPI, trimming

PIX 0

ANALOG
• DNWELL
• 4 pixels

PIX 1 PIX 3

PIX 2

Cell size : 50x50
Pixel pitch : 25um

Benjamin Parpillon4/26/2023 Farah Fahim | In-Pixel AI23



HLS implementation – multi-classifier algorithm
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SuperPixel implementation

• Floorplan with analog pixels 

with power and bias grid

• Red highlight corresponds to 
the data classifier algorithm

• White highlight corresponds 

to the registers for 

programming the neural 
network

• Full triple modular 
redundancy for SEE 

mitigation

Manuel Blanco Valentin



• Analog prototype ROIC with 16 x 32 

pixels just been manufactured. In 

the process of starting tests

• Prototype with embedded algorithm 

with two super pixels expected to be 

submitted May 2023

• Next version of chip to include

Multiple super-pixels and peripheral data 

transfer of selected clusters

Explore further data reduction through 

featurization in the periphery

Current status and next steps
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AI accelerator for featurization

1.5mm
1

m
m 16x32 pixel matrix



Algorithm development for featurization
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• Where does the particle cross the sensor mid-plane

• Angle of incidence to sensor (perpendicular and in- bending 

plane of the magnet)

• 3D tracking algorithms are computationally expensive! Grows 

with number of possible combinations of hits 

• With angle and reliable uncertainty, area to search for next hit 

is defined. Save resources by not looking at bad combinations

Predicting x,y, angle of incidence to sensor (𝞪, β)
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Prediction with uncertainty (x,y)
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Prediction with uncertainty (𝞪)
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𝞪  from x-profile

𝞪  from x-profile with time



Prediction with uncertainty (β)
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β from y-profile

β from y-profile with time



Multi-foundry chiplet ROIC edge
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Implementation ideas

• Highly parallel processing enabled by 

vertical integration

• Low power data transfer 

• Reduced clock speed

3D-IC

AI accelerator f or f eaturization

100𝜇m

20𝜇m

Chip periphery  with high speed links

AI chiplet

• Transfer selected clusters to chip 

periphery

• Data transfer across chip ~ 2cm 

is about ~1pF

• High speed inference engine 

• Serialize and transfer selected 

clusters off-chip on a high-speed link

• AI Chiplet: 7/5/3nm node

• Highest overhead and power 

consumption



Neuromorphic Implementation: 

How to exploit the time information?

4/26/2023 Farah Fahim | In-Pixel AI33



Neuromorphic frontend concept based on Dynamic Vision Sensors

detector

ON and OFF
spike generator

detector

TIA

Integrator + 
reset

ON spike

OFF spikes

ON pulse

OFF pulse
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TIA
Integrator

Vhigh

Vlow

reset

• Pulse shape encoded in spike train

• Ultra-fast signal processing ~ 100ps
• Digital processing – power constraints 
• Analog processing – device constraints (speed)



Neuromorphic Algorithm development
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Neuromorphic Processing – Basic Model of Operation

𝑡𝑖𝑛
𝑡𝑜𝑢𝑡

Synapse

Weight, Delay

Threshold, 
Leak

Spiking 
Neuron

Spiking 
Neural 

Networks

time

• Computation with sparse events

• Binary valued events

• Inherent temporal dynamics

• Neuron fires with charge exceeding threshold

• Multiple tunable parameters
• Synaptic weights, delays
• Neuronal thresholds, leaks
• Network architecture

• Promising solutions in designing energy-
efficient and area-constrained systems

Shruti Kulkarni, Aaron Young



Evolutionary Optimization for Neuromorphic Systems (EONS)

• SNN Parameters:

– Synaptic Weight and Delays

– Neuronal Thresholds and leak

– Network topology

• Often produces networks with 
very sparse connectivity

• Useful for co-design

• Can be slow to train

Schuman, Catherine D., et al. "An evolutionary optimization framework for neural networks and neuromorphic architectures." 2016 
International Joint Conference on Neural Networks (IJCNN). IEEE, 2016.

Shruti Kulkarni, Aaron Young



Translating dataset to spikes

Sensor data

Temporal 
encoding of pixel 
values over time

Target

Classify ‘pT’ 
into bins

/
Regression 

Decoder

Learning Rule

Cost/
Fitness

pT

Spike Trains

t

t

<x, y, α, β>

Simulated Spike Data:

• Generate spike every 400e change in the signal

• Signal measure every sampling time

Sensor 
Waveform

Simulated 
spikes

Positive pulses

Negative pulses

C
h
a
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e
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)

Shruti Kulkarni, Aaron Young



Initial training results

• Dataset: 

 95% high pT samples, 5% low pT samples

• Training: 

 With 70k samples

 Balanced dataset

 SNN size: 688 neurons, 746 synapses

• Test results:

 With ~650k samples (unbalanced) 

 F1 score: 0.7

 Accuracy: 0.60

Shruti Kulkarni, Aaron Young



Y-profile equivalent: “OR”

Unbalanced dataset

• Training samples: 2.6 million; Test samples: ~1.3 million

• Test accuracy: 0.62; Test f1 score: 0.73

True labels/ Predicted Class 0 Class 1

True low pT (0) 70,229 68,480

True High pT(1) 929,830 1,613,667

True labels/ Predicted Class 0 Class 1

True low pT (0) 35,997 39,051

True High pT(1) 463,962 814,966

Training set

Test set

Column-wise reduction
…

7 channels per timestep



Fitness function with penalty term

Predicted 0 Predicted 1

True 0 182 74,866

True 1 966 1,277,962

• Trained for 1000 epochs

• Network: 548 nodes, 202 edges

• Total Test samples: 1,353,976

• Testing f1 score: 0.92

• Testing Accuracy: 0.94Classification is heavily biased towards high pT samples

Shruti Kulkarni, Aaron Young

Introduce penalty term that is high for misclassification of very high pT samples, and 

small for low pT (class 1) samples

– Prediction error:

𝐸 = | 𝑝𝑟𝑒𝑑 − 𝑡𝑎𝑟𝑔𝑒𝑡|

– EONS fitness: 

𝑓 = ෍

𝑖

−𝐸𝑖 × | tanh 𝑘 × 𝑝𝑇𝑖 − 𝑝𝑇𝑡 |

True pT
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Y-profile with spatial encoding 

• Test Samples: 173510

• Data Classification (>2GeV): 91.91%
• Data Rejection: 19.02% 

• SNN trained on samples with:

• pT threshold at 0.5

• y-local ∈ [−1.0, 1.0]

• # inputs: 27 (26 + bias), #o/ps: 2

• Training Samples: 345,383

• Data Classification (>2GeV): 91.43%
• Data Rejection: 19.05% 

• Trained network: 

• # Neurons: 46, # synapses: 89

• Performance evaluated with pT threshold 

at 2GeV



Neuromorphic Materials for edge computation
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• Fermilab

Nhan Tran, Doug Berry, Lindsey Gray, Jennet Dickinson, Gauri Pradhan, Benjamin Parpillon, Guiseppe Di Guglielmo

• Northwestern University

Manuel Blanco Valentin, Seda Memik

• UIC

Corrinne Mills, Jieun Yoo, Amit Trivedi

• Johns Hopkins

Morris Swartz, Petar Maksimovic

• ORNL

Shruti Kulkarni, Aaron Young

• Sandia National Lab

Patrick Xiao, Alec Talin, Sapan Agarwal

Thank you
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Case Study II - 65 nm implementation

 – to understand challenges and strategies to overcome them

 – non-reconfigurable, non-programmable NN for data compression
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❏ Charge integration → Digital Conversion → Data Compression → Off-Chip Data transfer

❏ For deadtime-less operation: Charge integration + Digitization should take the same time as Off-Chip Data Transfer

❏ While ADC is converting the signal for this cycle, readout IC is transferring data from previous cycle

❏ Single chip: (400 x 400 pixels x 10b x 1Mfps) 1.6Tbps data → 32Gbps enabled by 50x lossy data compression                                          

❏ 1x 32 Gbps photonic link or 3 x 10.24 Gbps link per chip (~5cm2)

46

In-pixel AI/ML to enable Mfps camera operation 

Charge 

Integration

Analog to Digital 

Conversion

Data 

Compression

Off-chip Data 

Transfer

Subchip = 

1024 pixels for 

100 Kfps operation

~1µs ~9µs Full-readout 1024*10b @ 1GSPS 

= 10µs

Subchip = 

1024 pixels for 

100kfps operation

~1µs ~9µs Data compression

PCA: 50x 

1 cycle: 160n

AE: 70x 

30 cycles: 4.8µs

220b@ 1GSPS = 

220n

150b @ 1GSPS = 

150n
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Ptychography: Imaging using coherent interference patterns in diffraction from object

- Large quantities of data with inherent redundancy

Solution: Image Compression for X-Ray Imaging

Detector goal: 1 Mframe/s 

This prototype: Frontend at 100 Kframes/s and 50 - 70x data compression in the pixel

47

Physics Background: Ptychography

Huang, P., Du, M., Hammer, M., Miceli, A., & Jacobsen, C. (2021). Fast digital lossy compression for X-ray ptychographic data. Journal of synchrotron radiation, 28(Pt 1), 292–300.

4/26/2023 Farah Fahim | In-Pixel AI
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Why data compression instead of zero-suppression?

Data rate: 

400 × 400 (pixels per chip) × 10b (ADC) × 1 MHz  

~ 1.6 Tbps

Data Sparsification: 

- Zero suppression (overhead address ~ 18-20b per 12b data)

- Simulated data (~97% zeros) vs. Noisy data (~60% zeros)

4/26/2023 Farah Fahim | In-Pixel AI



● Area per pixel: 50 µm x 50 µm without data 

compression

● Area per pixel: 55 µm x 55 µm with data 

compression - Explored two approaches
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XROCKET: Proof of concept chip

Full 
Readout
RTL in  System Verilog

Zero-
Suppressed

RTL in System Verilog

AutoEncoder
RTL from hls4ml

PCA
RTL from C++

4/26/202
3

Farah Fahim | In-Pixel AI



• Analog frontend consists of 
preamplifier + CDS + serial 
SAR 

• Digital pixel backend consists 
of serial SAR logic

• Synchronous binary tree 
priority encoder

4/26/2023 Farah Fahim | In-Pixel AI50

XROCKET Pixel frontend
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XROCKET

4/26/202
3

Farah Fahim | In-Pixel AI

1 pixel 32 x 32 

pixels

400 x 400 

pixels

Camera 

with 4 x 4 

chips

Size 55 × 55 

𝛍m2

1.76 ×  

1.76 mm2

2.2 ×  2.5 

cm2

Power 50𝛍W 51.2mW 8W 128W

Raw data 10b/10𝛍s 

= 1Mbps

1Gbps 1.6Tbps 25.6Tbps

With 70x 

compression

14Mbps 23 Gbps 360Gbps

Data rates and design choices
- Have to compress data on chip
- Spend ~ 1pJ/b for data transfer off-

chip (takes lower power to process 
the data on-chip)

- Should this be done in-pixel or at 
the periphery?



In partnership with:   

Algorithm Co-Design



Goal: Reasonable Reconstruction of original diffraction image

Parameter Choice: 30 outputs ← tradeoff compression vs. quality loss

- Analogous to principal components 

- Weights are thus mathematically calculated: for inverse of eigenimages of diffraction input
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Algorithm 1: Principal Component Analysis (PCA)

Alex Williams, It’s Neuronal Blog

Calculated Weight Distribution, PCA
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Pn = Dj ×Rj×n
−1

j=1024
n=30



● Output Size: 30 → based on factor of compression, here 50x 
○ Going from 1024 × 10-bit to 30 × 7-bit

● PCA Loop Limits
○ Number of rows       : 32
○ Number of columns : 32
○ Output Size              : 30  ↔  Number of Eigenvalues

● Intermediate Data 
○ 16-bit: PCA sensitive to loss of precision during accumulation

■ Inverse Eigenimage Matrix
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PCA Algorithm: C++ Realization

30

1*32*32=
1024

ufixed<10,10>

fixed<6,5>

inputs

outputs

weights

ufixed<12,1>

32*32*30=
30720
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} Eigenimage dimensions 
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Huang, P., Deng, J., Noonan, D., Tran, N., Fahim, F., & Jacobsen, C. (2022). Supplementary 
Material: Matrix Factorization approaches to lost compression of ptychographic data. 

Journal of synchrotron radiation, Preprint, 43-50 Pn = Dj ×Rj×n
−1

j=1024
n=30

Performing 1024*10*30720*12/10us 
~ 400 TOPS

32 x 32 

pixels

400 x 400 

pixels

Camera 

with 4 x 4 

chips

TOPS-INT12 (data 

rate ~ 100 Kfps)

~0.06 ~0.9 ~14

TOPS-INT12 (data 

rate ~ 1 Mfps)

~0.6 ~9 ~140

• Computing the Fourier ring 

correlations (FRC) between 

the reconstructed image 

and the initial image used to 

simulate the diffraction 

patterns. 

• FRC quantifies the similarity 

of two images across 

varying spatial resolutions.

Google edge TPU: 4TOPS (Int 8)
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• The eigenimages are the basis of the diffraction patterns, not the initial 
images, and the characteristics of the diffraction pattern depend more on 
the experimental setup than the actual object.  

• For the same experimental setup, the eigenimages from two objects are 
roughly the same and can be interchangeable

• Eigen values generated from the mandrill image as the training data

• PCA performed on Algae data set

• Acceptable image reconstruction performance

• OK to hardcode weights !!

4/26/2023 Farah Fahim | In-Pixel AI56

Can you use eigen images from one training set for another data set
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Algorithm 2: AutoEncoder (AE)

301024

D
en

se

Li
n

ea
r

ufixed<5,5> fixed<5,5,RND_CONV,SAT>

inputs outputs

weights

biases

fixed<6,1>

fixed<6,1>

B
u

ff
er

30

fixed<13,8>
30720

30

Fully-Connected Dense Layer “Encoder” Matrix

- mimic PCA implementation structure
- Outputs remain as a 30-value latent space

Weight Computation

- Determined from Quantization-Aware model training

Output Size: 30 → based on factor of compression, here 70x 
  - Going from 1024 x 10-bit to 30 x 5-bit
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AutoEncoder (AE) Algorithm

Pre-Processing Inputs

- reduce input precision (10’b ADC output) 
to 5’b: re-scaling

- Goal: Improve training of weights

- Via reducing full-scale and thus 
increasing occupancy

- 5’b “Pseudo-square root” achieved by 
creating 3 gain regions: x32; x2; ÷2

4/26/2023 Farah Fahim | In-Pixel AI

32 x 32 

pixels

400 x 400 

pixels

Camera 

with 4 x 4 

chips

TOPS-INT6 (data 

rate ~ 100 Kfps)

~0.06 ~0.9 ~14

TOPS-INT6 (data 

rate ~ 1 Mfps)

~0.6 ~9 ~140

Note INT6 vs. INT 12 for PCA – area improvement



Weight Comparison: AE vs. PCA
- Percentage of Zero-Value Weights: PCA is 77.98 % vs. AE is 8.69%

- Weight Value Patterns per Output: none for PCA, regionalized for AE

59

PCA Calculated Weight Distribution AE Post-Training Weight Distribution 
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Key takeaways

• Lossy data compression is acceptable for Ptychography due to the repetitive 
nature of the data

• Weights can be hardcoded since these don’t need to be recomputed for new 
images 

• Heat maps of the weights from PCA and AE indicate the different implementation 
methods might be needed

• We wanted to avoid dead areas in a large area sensor and avoid moving data 

across the large ROIC and chose to investigate in-pixel implementation instead of 

chip periphery
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In partnership with:   

High-Level Synthesis 

Implementation



Overcoming Congestion
• Fully-Dense Architecture for for both AE and PCA

• Challenge: Physical Interconnectivity of inputs and weights
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Closeup of Congestion Map: zoomed around the chip’s central regions 
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Increased pixel size to 75𝛍m x 75 𝛍m 

Pixel size to 

50𝛍m x 50 𝛍m 
104% 
occupancy



Trade latency for resources

Inherent Data Patterns
- Diffraction “rings”: results from regional resources may cancel

- Reduce amount of latching/storage
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HLS Directives - Experiments

Xilinx: Pipelining Niansong Zhang: Unrolling
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https://www.zzzdavid.tech/


In partnership with:   

Overcoming Congestion

RTL+Logic Synthesis Level      Physical Design Level



AE Restructured the weight buffers to perform 1,024 multiplication in parallel and efficiently pipeline them across each of 
the 30 output values

vs. 

PCA Inlined all of the HLS-code functions and unrolled all the loops to take advantage of the sparsity of weights
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HLS Experiments: Design Conclusions

HLS 

Solution

AE PCA

Latency Area (mm2) Latency Area (mm2)

modular 30 0.549 30 1.516

in-line 1 1.700 1 0.652
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AE one multiplier per pixel

pipeline over 30 clock cycles

PCA: Constant propagation. 

Multipliers are replaced by fixed point adders
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Different approaches for AE & PCA



Physical Design

Three Branches:

- Optimizing Pitch between pixels

- Logic Flow: Accumulation
- Initial RTL - S tree (System Verilog) → 1D tree → changed to H tree

- Pixel Arrangement to decrease routing lengths 
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0 1 2 3 4 5 6 7

15 14 13 12 11 10 9 8

16 17 18 19 20 21 22 23

31 30 29 28 27 26 25 24

32 33 34 35 36 37 38 39

47 46 45 44 43 42 41 40

48 49 50 51 52 53 54 55

63 62 61 60 59 58 57 56

Initial S-Tree Logic Flow
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1D hierarchy 2D hierarchy



Physical Design

Three Branches:

- Optimizing Pitch between pixels

- Logic Flow: Accumulation
- Initial RTL - S tree → changed to H tree

- Pixel Arrangement to decrease routing lengths 
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Multiplication last

Creates a 1D hierarchy

Multiplication first

Create a 2D hierarchy
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Changes to HLS for optimization and better layout routing



Physical Design

Three Branches:

- Optimizing Pitch between pixels

- Logic Flow: Accumulation
- Initial RTL - S tree → changed to H tree

- Pixel Arrangement to decrease routing lengths 
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80% occupancy cutoff @pitch=112 → proceed with 110

With pitch=110, post-Place&Route:

- No congestion issues

- Logic distributed throughout quadrant

- DRC clean
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What about a reprogrammable version

PCA – 

• Massive multiplier size (12b multipliers much larger than 6b multiplier) – Maybe 

Not the best path forward

Autoencoder - 

• only: 1024 multipliers (6b) already on chip

• Pixel area for encoding weights: 30x6b weights – adding registers in the pixel 

area; (maybe SRAMs would be smaller) if pixel size grows to 75𝛍m x 75𝛍m 
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