

Frontend implementation of Al-machine learning neural networks for in-pixel radiation-hard edge compute

Farah Fahim on behalf of Smart Pixels collaboration April 2023

Case Study I: 28 nm implementation for CMS Phase III R&D – reconfigurable NN for data filtering in-pixel

LHC Grand challenge

Extreme Environment

Total ionizing dose : ~ 1 Grad

Single event effects : Flux of > 20 MeV hadrons = 10 MHz/cm². Target 1 error every ~10s

Data Volume

1 billion sensor channels and 1 billion collisions/sec producing raw data at >Pb/s

More than 99.9% of data generated does not provide useful physics information

Occupancy ~ 3 GHz/cm² in vertex detectors

Requires more granular detectors \rightarrow increasing data volume, power consumption, more complex on-detector electronics. **Per chip ~ 1Mpixels; > 1 Tbps of zero-suppressed data.**

Edge computing

What is the best approach?

- Data compression
- Data filtering
- Data featurization
- Where should the algorithm be implemented?
- Near sensor: Al/ML mixed-foundry chiplet:

Standalone general purpose

Does not overcome IO bottleneck (1 Tbps off-sensor)

Edge of sensor/ Readout integrated circuit:

Easier implementation (larger area and power), optimally utilizes chip bandwidth On-chip transfer

• In-pixel: At the data source:

Minimizes data movement

Power and area constraint

Design Methodology: Physics driven hardware co-design

ALGORITHM

DEVELOPMENT

ML Model

- Algorithm development based on Physics data
- hIs4mI simplifies the design of on-chip ML accelerators

 hIs4mI directives | << | HLS directives |
 C++ library of ML functionalities optimized for HLS
- TMR4sv_hls: Triple Modular Redundancy tool for System Verilog & HLS

LHC Pixel detector

- 4 layers closest to the beam pipe
- Vertex position for high momentum tracks (smaller pixels => higher resolution)
- ~5B pixels across ~30,000 chips
- R&D for Phase II started in 2012; chips in production ~ 2022
- 20B pixels; starting R&D 2022 (expected upgrade in 2034)

Technology	65nm CMOS	28 nm CMOS
Pixel size	50x50 μm ²	25x25 μm ²
Pixels	394x400 = 157.6k	788x800 = 0.63M
Detection threshold	~1000e-	~500e-
Hit rate	< 3GHz/cm ²	< 3GHz/cm ²
Trigger rate	1MHz	40MHz (?)
Digital buffer	12.5 μs	(?)
Readout data rate	1-4 links @ 1.28Gbps	1 photonic link @ 30 Gbps
Radiation tolerance	500Mrad at -15°C	1Grad at -15°C
Power	1 W /cm ²	1 W /cm ²
		52 Fermi

Concept: Real-time tracking

Cluster shapes and Pulse information for filtering out low p_T particles

- NN classifier identifies and saves clusters from tracks with $p_T > 2 \text{ GeV}$
- \geq 95% data reduction by saving only high p_T
- Low power implementation

Compact algorithms for data reduction through featurization

- Predict physics information (x,y,θ,φ) and meaningful error (UQ) on particle position, angle
- Potential for reduction of track seeds → saves time & computing resources down the line

Technology development to enable on-sensor computing

- Ultra low power in-memory compute chips
- 3D integration for optimized data processing
- Leverage emerging technologies such as novel CMOS compatible memristors

S Fermilab

Algorithm development for momentum classification

Smart pixel dataset

- State-of-the-art dataset for developing algorithms for implementation on-ASIC
- Simulated MIP interactions in a **futue pixel detector** Located at radius of 30 mm
 - 3.8 T magnetic field
 - $50 \times 12.5 \mu m$ pixels
 - 100 µm thick sensor
 - Time steps of 250 picoseconds
- Use track parameters taken from CMS data in Run 2

Simulation with time-sliced <u>PixelAV</u>, including E field and weighting field

Morris Swartz

Farah Fahim | In-Pixel Al 4/26/2023

on <u>zenodo</u>

9

Co-relation between cluster shape and momentum

- 1/3rd of all clusters are associated with tracks
- Untracked clusters are mainly due to loopers, broken clusters & other backgrounds
- Low p_T positively charged tracks increase cluster size
- Low p_T negatively charged tracks decrease cluster size
- Strong correlation between y-size and y-local on the module
- Multi-level classifier for selecting high momentum tracks

Morris Swartz

🛟 Fermilab

Data filtering to reject 95% of data

Conservatively reject:

< 0.2 GeV	≥ 6%
< 0.5 GeV	≥ 36%
< 1 GeV	≥ 70%
< 2 GeV	≥ 94%

- Only hits that are reconstructed into tracks are simulated
- Rejecting lower p_T hits (often single pixel) will increase the fraction rejected
- Generating data sets associated with untracked clusters, noise hits and other background

11 4/26/2023 Farah Fahim | In-Pixel Al

Morris Swartz, Jennet Dickinson

Algorithm performance

• Model 1: y-size: count no. of pixels with hit

 Model 2: y-profile: add total charge accumulated across all pixels in the ydirection

 Model 3: y-profile with timing: add total charge accumulated across all pixels in the y-direction every 250ps – 8 data points over 4ns of charge integration

\mathbf{Model}	Data Reduction	False Positives	False Negatives
Model 1	77.9~%	13.4%	20.7~%
Model 2	65.8~%	10.9%	13.4~%
Model 3	57.4~%	8.9~%	8.1%

Jieun Yoo

Algorithm co-design with frontend architecture

- Lowering noise threshold increases slightly improves efficiency
- Increasing no. of bits does not improve efficiency

Threshold $[e^-]$	$0.2~{ m GeV}$	$0.5~{ m GeV}$	$1 { m ~GeV}$	$2 {\rm GeV}$
0	78.2~%	88.2~%	91.0~%	92.6~%
400	77.5~%	85.6~%	87.5~%	88.3~%
600	74.4~%	82.2~%	84.3~%	85.9~%
800	75.3~%	82.2~%	84.3~%	86.0~%

Retraining local algorithms

- Sensor pixels can be divided into various zones to exploit the correlation with y_local
- The algorithm is reprogrammable and weights are trained based on position dependent data
- 2×2 cm sensor module: 3200 rows & 100 cols
- Every region needs minimum 16 rows and maximum ~ 64 rows
- 16×16 sensor pixel = 8×32 ROIC pixels

SuperPixel concept: Algorithm co-design

Total Digital area for 256 pixels

> V1: 64(625×4 - 625) = 120,000 μm² V2: 64(625×4 - 825) = 104,000 μm²

Design space exploration for hardware co-design

Target digital area V1= 120,000 μm² Target digital area V2 = 104,000 μm²

- Original model is too large for the given area
- Exploring area reduction without significantly decreasing the model accuracy
- Reducing the number of neurons in the first hidden layer and the bit-width of the weights and activation function

Design space exploration for hardware co-design

- · Compact: Reduce size by reducing the number of parameters
- Energy Efficient: Eliminate clocking and make the design fully combinatorial
- No. of operations: 75 GOPS (6b INT) per super pixel: 0.5 TOPS/mm²: 200 TOPS/chip

17 4/26/2023 Farah Fahim | In-Pixel Al

Giuseppe Di Guglielmo

🛟 Fermilab

Readout Integrated Circuit: Traditional Implementation

Front-end pixel architecture: Synchronous ADC

- Signal processing within 1 BXClk cycle (25 ns)
- Insensitive to pileup

Front-end pixel architecture

- 25µm × 25µm pixel AC coupled ADC
- 2-bit ADC:

 \rightarrow version 1: Single ended

 \rightarrow version 2: Differential

• Auto zero in every pixel for threshold correction

Charge Sensitive Preamplifier

- Regulated cascode for gain stage
- Detector Capacitance 30fF
- Leakage current compensation (up to 50 nA)

Result	Mode 1	Mode 2	unit
Power	3	4.2	μW
ENC	61	52	e-
Charge sensitivity	40.85	42.3	μV/e-
Phase Margin	65	78	degree
Dynamic Range	13	13	ke-

- AC coupled
- Auto-zero for offset cancellation
- Exploring an alternate clockless architecture

Result	v1	v2	unit	comments
Power	3.7	5.2	μW	Per pixel
Total Equivalent Dispersion Charge	90	100	e-	Includes: • ENC • Qth • Baseline fluctuation • kickback
Min Threshold	430	475	e-	4.75 σ
Analog Area	678	845	μm²	

Benjamin Parpillon

Grouping 4 pixels to create an analog island

23 4/26/2023 Farah Fahim | In-Pixel Al

Benjamin Parpillon

HLS implementation – multi-classifier algorithm

24 4/26/2023 Farah Fahim | In-Pixel Al

SuperPixel implementation

- Floorplan with analog pixels with power and bias grid
- Red highlight corresponds to the data classifier algorithm
- White highlight corresponds to the registers for programming the neural network

 Full triple modular redundancy for SEE mitigation

Current status and next steps

- Analog prototype ROIC with 16 x 32 pixels just been manufactured. In the process of starting tests
- Prototype with embedded algorithm with two super pixels expected to be submitted May 2023
- Next version of chip to include

Multiple super-pixels and peripheral data transfer of selected clusters

Explore further data reduction through featurization in the periphery

Algorithm development for featurization

Predicting x,y, angle of incidence to sensor (α , β)

- Where does the particle cross the sensor mid-plane
- Angle of incidence to sensor (perpendicular and in-bending plane of the magnet)
- 3D tracking algorithms are computationally expensive! Grows with number of possible combinations of hits
- With angle and reliable uncertainty, area to search for next hit is defined. Save resources by not looking at bad combinations

Jennet Dickinson, Gauri Pradhan, Lindsey Gray

Prediction with uncertainty (x,y)

20 40 Full precision • Full precision + time Quantized 10 15 20

30

.

Full precision Full precision + time

Fermilab

Jennet Dickinson, Gauri Pradhan, Lindsey Gray

Prediction with uncertainty (α)

30

Jennet Dickinson, Gauri Pradhan, Lindsey Gray

Fermilab

Prediction with uncertainty (β)

β from y-profile

Jennet Dickinson, Gauri Pradhan, Lindsey Gray

Implementation ideas

Multi-foundry chiplet

- Serialize and transfer selected clusters off-chip on a high-speed link
- AI Chiplet: 7/5/3nm node
- Highest overhead and power consumption

ROIC edge

- Transfer selected clusters to chip periphery
- Data transfer across chip ~ 2cm is about ~1pF
- High speed inference engine

3D-IC

- Highly parallel processing enabled by vertical integration
- Low power data transfer
- Reduced clock speed

Neuromorphic Implementation: How to exploit the time information?

Neuromorphic frontend concept based on Dynamic Vision Sensors

- Pulse shape encoded in spike train
- Ultra-fast signal processing ~ 100ps
- Digital processing power constraints
- Analog processing device constraints (speed)

Neuromorphic Algorithm development

Abisko Codesign Overview

Neuromorphic Processing – Basic Model of Operation

- Computation with sparse events
- Binary valued events

- Inherent temporal dynamics
- Neuron fires with charge exceeding threshold
- Multiple tunable parameters
 - Synaptic weights, delays
 - Neuronal thresholds, leaks
 - Network architecture
- Promising solutions in designing energyefficient and area-constrained systems

Shruti Kulkarni, Aaron Young

Evolutionary Optimization for Neuromorphic Systems (EONS)

- SNN Parameters:
 - Synaptic Weight and Delays
 - Neuronal Thresholds and leak
 - Network topology
- Often produces networks with very sparse connectivity
- Useful for co-design
- Can be slow to train

Schuman, Catherine D., et al. "An evolutionary optimization framework for neural networks and neuromorphic architectures." 2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 2016.

Translating dataset to spikes

Shruti Kulkarni, Aaron Young

Initial training results

• Dataset:

95% high pT samples, 5% low pT samples

• Training:

With 70k samples

Balanced dataset

SNN size: 688 neurons, 746 synapses

• Test results:

With ~650k samples (unbalanced)

F1 score: 0.7

Accuracy: 0.60

Y-profile equivalent: "OR"

Unbalanced dataset

- Training samples: 2.6 million; Test samples: ~1.3 million
- Test accuracy: 0.62; Test f1 score: 0.73

Trair	ning set	
True labels/ Predicted	Class 0	Class 1
True low pT (0)	70,229	68,480
True High pT(1)	929,830	1,613,667

Test	set	
True labels/ Predicted	Class 0	Class 1
True low pT (0)	35,997	39,051
True High pT(1)	463,962	814,966

Fitness function with penalty term

Introduce penalty term that is high for misclassification of very high pT samples, and small for low pT (class 1) samples

Prediction error:

E = |pred - target|

EONS fitness:

Classification is heavily biased towards high pT samples

- Trained for 1000 epochs
- Network: 548 nodes, 202 edges
- Total Test samples: 1,353,976
- Testing f1 score: 0.92
- Testing Accuracy: 0.94

🛾 🛟 Fermilab

Shruti Kulkarni, Aaron Young

Y-profile with spatial encoding

- SNN trained on samples with:
 - pT threshold at 0.5
 - y-local $\in [-1.0, 1.0]$
- # inputs: 27 (26 + bias), #o/ps: 2
- Training Samples: 345,383

- Trained network:
 - # Neurons: 46, # synapses: 89
- Performance evaluated with pT threshold at 2GeV
- **Test Samples**: 173510
- Data Classification (>2GeV): 91.43%
- Data Rejection: 19.05%

Neuromorphic Materials for edge computation

Analog processing potentially enables lower energy, faster, and/or more complex on-pixel processing – or enables larger, more sophisticated neural networks

🛠 Fermilab

Patrick Xiao, Alec Talin, Sapan Agarwal

Co-

design

Thank you

• Fermilab

Nhan Tran, Doug Berry, Lindsey Gray, Jennet Dickinson, Gauri Pradhan, Benjamin Parpillon, Guiseppe Di Guglielmo

• Northwestern University

Manuel Blanco Valentin, Seda Memik

• UIC

Corrinne Mills, Jieun Yoo, Amit Trivedi

• Johns Hopkins

Morris Swartz, Petar Maksimovic

• ORNL

Shruti Kulkarni, Aaron Young

Sandia National Lab

Patrick Xiao, Alec Talin, Sapan Agarwal

Case Study II - 65 nm implementation

- to understand challenges and strategies to overcome them
- non-reconfigurable, non-programmable NN for data compression

In-pixel AI/ML to enable Mfps camera operation

 \Box Charge integration \rightarrow Digital Conversion \rightarrow Data Compression \rightarrow Off-Chip Data transfer

□ While ADC is converting the signal for this cycle, readout IC is transferring data from previous cycle

□ Single chip: (400 x 400 pixels x 10b x 1Mfps) 1.6Tbps data → 32Gbps enabled by 50x lossy data compression

□ 1x 32 Gbps photonic link or 3 x 10.24 Gbps link per chip (~5cm²)

	Charge Integration	Analog to Digital Conversion	Data Compression	Off-chip Data Transfer
Subchip = 1024 pixels for 100 Kfps operation	~1µs	~9µs	Full-readout	1024*10b @ 1GSPS = 10µs
Subchip = 1024 pixels for 100kfps operation	~1µs	~9µs	Data compression PCA: 50x 1 cycle: 160n AE: 70x 30 cycles: 4.8µs	220b@ 1GSPS = 220n 150b@ 1GSPS = 150n

Physics Background: Ptychography

Huang, P., Du, M., Hammer, M., Miceli, A., & Jacobsen, C. (2021). Fast digital lossy compression for X-ray ptychographic data. Journal of synchrotron radiation, 28 (Pt 1), 292–300.

Ptychography: Imaging using coherent interference patterns in diffraction from object

- Large quantities of data with inherent redundancy

Solution: Image Compression for X-Ray Imaging

Detector goal: 1 Mframe/s

This prototype: Frontend at 100 Kframes/s and 50 - 70x data compression in the pixel

Why data compression instead of zero-suppression?

Data rate:

400 × 400 (pixels per chip) × 10b (ADC) × 1 MHz \sim 1.6 Tbps

Data Sparsification:

- Zero suppression (overhead address ~ 18-20b per 12b data)
- Simulated data (~97% zeros) vs. Noisy data (~60% zeros)

compression - Explored two approaches

XROCKET Pixel frontend

- Analog frontend consists of preamplifier + CDS + serial SAR
- Digital pixel backend consists of serial SAR logic
- Synchronous binary tree priority encoder

XROCKET

Data rates and design choices

- Have to compress data on chip
- Spend ~ 1pJ/b for data transfer offchip (takes lower power to process the data on-chip)
- Should this be done in-pixel or at the periphery?

	1 pixel	32 x 32 pixels	400 x 400 pixels	Camera with 4 x 4 chips
Size	55 × 55 μm²	1.76 × 1.76 mm ²	2.2 × 2.5 cm ²	
Power	50µW	51.2mW	8W	128W
Raw data	10b/10μs = 1Mbps	1Gbps	1.6Tbps	25.6Tbps
With 70x compression		14Mbps	23 Gbps	360Gbps
				🕹 🕹 Fermi

Algorithm Co-Design

Algorithm 1: Principal Component Analysis (PCA)

Calculated Weight Distribution, PCA

Goal: Reasonable Reconstruction of original diffraction image

- Analogous to principal components
- Weights are thus mathematically calculated: for inverse of eigenimages of diffraction input

PCA Algorithm: C++ Realization

Material: Matrix Factorization approaches to lost compression of ptychographic data. Journal of synchrotron radiation, Preprint, 43-50

Output Size: $30 \rightarrow$ based on factor of compression, here 50x

Going from 1024×10 -bit to 30×7 -bit

PCA Loop Limits

- Number of rows : 32 0
- Number of columns : 32 0
- Output Size Ο

- **Eigenimage dimensions**
- : 30 \leftrightarrow Number of Eigenvalues
- Intermediate Data
 - 16-bit: PCA sensitive to loss of precision during accumulation
 - Inverse Eigenimage Matrix

with 4 x 4 pixels pixels chips TOPS-INT12 (data ~0.06 ~0.9 ~14 rate ~ 100 Kfps) TOPS-INT12 (data ~140 ~0.6 ~9 rate ~ 1 Mfps)

🛠 Fermilab

Google edge TPU: 4TOPS (Int 8)

Eigenimage 2

40

-10

-15

Eigenimage 3

PCA Reconstruction, N=20

PCA Reconstruction, N=100

PCA Reconstruction, N=5

PCA Reconstruction, N=30

PCA Reconstruction, N=300

PCA Reconstruction, N=10

PCA Reconstruction, N=50

PCA Reconstruction, N=1000

‡ Fermilab

-20

-40

- 10

- 5

- 0

-5

L 10⁰

- 10¹

- 10³

- 10²

Can you use eigen images from one training set for another data set

- The eigenimages are the basis of the diffraction patterns, not the initial images, and the characteristics of the diffraction pattern depend more on the experimental setup than the actual object.
- For the same experimental setup, the eigenimages from two objects are roughly the same and can be interchangeable
- Eigen values generated from the mandrill image as the training data
- PCA performed on Algae data set
- Acceptable image reconstruction performance
- OK to hardcode weights !!

mandrill: training data

Algorithm 2: AutoEncoder (AE)

Fully-Connected Dense Layer "Encoder" Matrix

- mimic PCA implementation structure
- Outputs remain as a 30-value latent space

Weight Computation

- Determined from Quantization-Aware model training

Output Size: $30 \rightarrow$ based on factor of compression, here 70x

- Going from 1024 x 10-bit to 30 x 5-bit

AutoEncoder (AE) Algorithm

Pre-Processing Inputs

- reduce input precision (10'b ADC output) to 5'b: re-scaling
- Goal: Improve training of weights
 - Via reducing full-scale and thus increasing occupancy
- 5'b "Pseudo-square root" achieved by creating 3 gain regions: x32; x2; ÷2

Note INT6 vs. INT 12 for PCA – area improvement

Weight Comparison: AE vs. PCA

- Percentage of Zero-Value Weights: PCA is 77.98 % vs. AE is 8.69% -
- Weight Value Patterns per Output: none for PCA, regionalized for AE -

Key takeaways

- Lossy data compression is acceptable for Ptychography due to the repetitive nature of the data
- Weights can be hardcoded since these don't need to be recomputed for new images
- Heat maps of the weights from PCA and AE indicate the different implementation methods might be needed
- We wanted to avoid dead areas in a large area sensor and avoid moving data across the large ROIC and chose to investigate in-pixel implementation instead of chip periphery

High-Level Synthesis Implementation

Overcoming Congestion

- Fully-Dense Architecture for for both AE and PCA
- Challenge: Physical Interconnectivity of inputs and weights

Post synthesis results for DNN.syn_opt12.v3 (beast1) Instance Cell count Cell area Net Area Comb. Buffer Flop Total area Inverter 165,211 41,214,600 852,903,339 DNN 553,451,040 299,452,299 485 828 640 1.871.280 24,536,520 Latch, Clock-Gate, Mem and Macro areas are omitted as they are all 0 -Pixel size to Ratio (H/W): 370073815 Core Utilization: 1.043757 50μm x 50 μm Cell Utilization: 104% -1598. occupancy 1589.0

Closeup of Congestion Map: zoomed around the chip's central regions

62 4/26/2023 Farah Fahim | In-Pixel AI

Increased pixel size to 75μ m x 75 μ m

Fermilab

HLS Directives - Experiments

<pre>void top (a,b,c,d) { func_A(a,b,11); func_B(c,11,12); func_C(12,d) return d; }</pre>	Nuc.A Inc.B Nuc.C
< 8 cycles	(B) With Dataflaw Pinalining

Xilinx: Pipelining

	veid xep()-(for_methdar()=0(2)=0(1-) (= e(0)= H(0)= 4(0))]]	i.		
Iterations				
	lafied Loop	Partially Un	rolled Loop	Unvolled Los
Read b(3) Read b(3	Read b(1) Read b(1)	Read b(3)	Read NO1	Read b(1
Read all Read all	Read of 1 Read of 0	Read c[2]	Read (C)	Read of t
		Read b(2)	Read 1075	Read b(2
		Read (2)	Read c(D)	Read of 2
Write a[2] Write a[2	Write a[1] Write a[2]			Read b(1
Write a[2] Write a[2	(washi washi			Read bit
Write a[3] Write a[3	(Write a[1] Write a[2]	•	•	Read b(1 Read c(1) Read b(1)
Write a[3] Write a[3	(Wolfer all) Wolfer all	ente alti		Read (c)) Read (c)) Read (c))
Write a(2) Write a(2	(Wolla a[1] Wolla a[2]	a a and a col and a col	- 	Read (2) Read (2) Read (2) Read (2)
With a(2) With a(2	(webs a()) webs a(d)	e Notice a(2) Notice a(2)	* * **********************************	Read 60 Read 60 Read 60
withe a(2) withe a(2	() Weiten aft) Weiten aft)	vinte a(2) vinte a(2)	e Normaliji Normaliji	Read b(1) Read c(1) Read c(1)
winte a(2) winte a(2	(We file a (2) We file a (2)	nota ajti nota ajti	Read b(1) Read b(2) Read b(2)
With a(2) With a(2	(a Withou (2) Withou (2)	nota ajti nota ajti	Read b(1) Read d(1) Read d(1)
withe a(3) within a(3	− − − − − − − − − − − − − − − − − − −	a Without (C) Without (C)	- 19-5a a(*) 19-5a a(*)	Read bit
with a [3] with a [3	() Werke a(t) Merke a(t)	e Teo teo a Ci Teo teo a Ci	antin afti antin afti	Read bit Read bit Rea
wine (3) wine (3	() Werka a(t) Kanka a(t)	e Victorați Victorați	- 19:30-4(-) 19:30-4(-)	Read bit Read bit Rea

Niansong Zhang: Unrolling

Trade latency for resources

Inherent Data Patterns

- Diffraction "rings": results from regional resources may cancel
- Reduce amount of latching/storage

Overcoming Congestion

RTL+Logic Synthesis Level

Physical Design Level

HLS Experiments: Design Conclusions

HLS Solution	AE		PCA	
	Latency	Area (mm ²)	Latency	Area (mm ²)
modular	30	0.549	30	1.516
in-line	1	1.700	1	0.652

AE Restructured the weight buffers to perform 1,024 multiplication in parallel and efficiently pipeline them across each of the 30 output values

vs.

PCA Inlined all of the HLS-code functions and unrolled all the loops to take advantage of the sparsity of weights

Different approaches for AE & PCA

AE one multiplier per pixel pipeline over 30 clock cycles

PCA: Constant propagation. Multipliers are replaced by fixed point adders

Physical Design

Three Branches:

- Optimizing Pitch between pixels
- Logic Flow: Accumulation
 - Initial RTL S tree (System Verilog) \rightarrow 1D tree \rightarrow changed to H tree
- Pixel Arrangement to decrease routing lengths

2D hierarchy

Initial S-Tree Logic Flow

67 4/26/2023 Farah Fahim | In-Pixel AI

Physical Design

Three Branches:

- Optimizing Pitch between pixels
- Logic Flow: Accumulation
 - Initial RTL S tree \rightarrow changed to H tree
- Pixel Arrangement to decrease routing lengths

Changes to HLS for optimization and better layout routing

```
1 #define H 32 // height
2 #define W 32 // width
3 #define C 30 // channels
5 void ae top(
     input_t inputs [H*W],
     weights_t weights [H*W][C], // Channel last
     biases_t biases[C],
8
     outputs_t outputs[C]) {
9
10
     accum_t accum[C];
11
12
     for (u32 \ j = 0; \ j < C; \ j++)
13
       accum[j] = biases[j];
14
     }
15
16
     for (u32 \ i = 0; i < H*W; i++)
17
       for (u32 \ i = 0; \ i < C; \ i++)
18
         accum[j] += inputs[i] * weights[i][j];
19
20
21
22
     for (u32 \ j = 0; \ j < C; \ j++) {
23
24
       outputs[j] = accum[j];
25
26 }
```

Multiplication last Creates a 1D hierarchy

```
1 #define H 32 // height
 2 #define W 32 // width
 3 #define C 30 // channels
 5 #define B 4 // block size
7 void ae_top(
     input_t inputs [H*W],
 8
     weights_t weights[C][H*W], // Channel first
9
     biases_t biases[C],
10
     outputs_t outputs[C]) {
11
12
     for (u32 \ i = 0; \ i < C; \ i++) \{ // Pipeline \}
13
       accum_t accum = biases[j];
14
       for (u32 \ i = 0; \ i < (H*W)/B; \ i++) \{ // Unroll \}
15
           accum t sub accum = 0.0;
16
           for (k = 0; k < B; k++) { // Submodule, unroll
17
                sub accum += inputs[i*B+k] *
18
                              weights[i][i*B+k];
19
20
           accum += sub_accum;
21
22
23
       outputs[j] = acc;
24
25 }
```

Multiplication first Create a 2D hierarchy

Physical Design

Three Branches:

- Optimizing Pitch between pixels
- Logic Flow: Accumulation
 - Initial RTL S tree \rightarrow changed to H tree
- Pixel Arrangement to decrease routing lengths

^{80%} occupancy cutoff @pitch=112 \rightarrow proceed with 110

With pitch=110, post-Place&Route:

- No congestion issues
- Logic distributed throughout quadrant
- DRC clean

What about a reprogrammable version

PCA –

 Massive multiplier size (12b multipliers much larger than 6b multiplier) – Maybe Not the best path forward

Autoencoder -

- only: 1024 multipliers (6b) already on chip
- Pixel area for encoding weights: 30x6b weights adding registers in the pixel area; (maybe SRAMs would be smaller) if pixel size grows to 75μm x 75μm

