Searches for WIMP dark matter in mono-X events at the LHC

Jennet Dickinson Physics 290E December 9, 2015

Outline

- Producing WIMPs in pp collisions
 - Effective field theory operators
 - Experimental signature
- Mono-X searches
 - ATLAS monojet search at 8 TeV
 - ATLAS monophoton search at 8 TeV
 - Other mono-X searches

Producing WIMPs at the LHC

- Weakly interacting massive particles (WIMPs) are a popular DM candidate
 Many experiments dedicated to WIMP search
- WIMPs interact with Standard Model particles at the level of weak interaction
- Annihilation of partons into WIMPs (χ) could be detectable at the LHC

$$\begin{array}{c} gg \to \chi \bar{\chi} \\ q\bar{q} \to \chi \bar{\chi} \end{array}$$

Effective interactions

Name	Initial state	Type	Operator	
C1	qq	scalar	$rac{m_q}{M_\star^2}\chi^\dagger\chiar q q$	χ is a
C5	gg	scalar	$rac{1}{4M_\star^2}\chi^\dagger\chilpha_{ m s}(G^a_{\mu u})^2$	∫ scalar
D1	qq	scalar	$rac{m_q}{M_\star^3}ar\chi\chiar q q$	
D5	qq	vector	$rac{1}{M_\star^2} ar{\chi} \gamma^\mu \chi ar{q} \gamma_\mu q$	
D8	qq	axial-vector	$rac{1}{M_\star^2} ar{\chi} \gamma^\mu \gamma^5 \chi ar{q} \gamma_\mu \gamma^5 q$	$\left \begin{array}{c} \chi \text{ is a} \\ \text{fermion} \end{array} \right $
D9	qq	tensor	$rac{1}{M_\star^2} ar\chi \sigma^{\mu u} \chi ar q \sigma_{\mu u} q$	
D11	gg	scalar	$rac{1}{4M_\star^3}ar\chi\chilpha_{ m s}(G^a_{\mu u})^2$	
				4

Effective interactions

- This effective field theory approach treats parton annihilation to DM as a point interaction
- When is this approach valid?
 - Momentum transferred in hard scatter
 mass of mediator particle
 - What region of (m_{χ}, M^*) space does this correspond to?
 - Can relate mass of mediator particle to suppression scale (M*) and coupling constant for the interaction

Effective interactions

- What if EFT approach is not valid at LHC?
 - Can also consider simplified models where a light mediator particle is introduced
 - At large mediator masses, EFT works well

WIMP production at the LHC What does the detector see?

$$gg \to \chi \bar{\chi}$$
 or $q \bar{q} \to \chi \bar{\chi}$

This looks exactly like an event where there was no hard scatter... it won't even be recorded!

Mono-X & E_T^{miss}

- Mono-X searches look for
 - 1. a familiar object (e.g. jet, SM particle)
 - 2. a momentum imbalance (E_T^{miss})
- Many possible sources of E_T^{miss}:
 - New physics! (e.g. WIMPs)
 - Neutrinos
 - Mis-measurements
 - Non-collision background (e.g. detector effects)

Main sources of background include:

- Z+jets with $Z \to \nu \nu$
- W+jets with $W \to \ell \nu$

ATLAS monojet search $\sqrt{s} = 8$ TeV

Monojet-like events must have...

- At least one high energy jet
- Large missing energy
- No leptons
- Energy of leading jet not too small compared to missing energy
- Jet and missing momentum not pointing in the same direction

ATLAS monojet search $\sqrt{s} = 8$ TeV

• Different EFT operators give different predictions for E_{τ}^{miss} distribution

Monojet limits

- Exclusion in parameter space of m_χ and M*
- Green line: values that correspond to relic abundance of DM measured by WMAP
- Red/purple lines: region where EFT treatment is valid —

Monojet limits Compare to direct detection

- Must make assumption about coupling to convert limits in (m_{χ}, M*) to (m_{χ}, $\sigma_{WIMP-Nucleon}$)
- Limits from colliders do well at low m_{χ} , especially for spin-independent interactions

Mono-photon searches \bar{q} γ χ Incoming parton radiates a photon

Main sources of background include:

• Z+ γ with $Z \rightarrow \nu \nu$

 \boldsymbol{Q}

• $Z+\gamma$ / $W+\gamma$ with mis- or un-identified lepton

ATLAS mono-photon search $\sqrt{s} = 8$ TeV

Mono-photon events must have...

- At least one high energy photon
- Large missing energy
- No leptons
- Photon and missing momentum do not point in the same direction
- No more than one jet

- No jets in the same direction as the photon

- Again, no excess is observed
- Exclusion drawn for three of the operators from slide 4
- Blue dashed lines: region / where EFT treatment is valid

Mono-photon limits Compare to direct detection

- Limits drawn for different choices of coupling
- Again, limits from colliders do well at low m_{γ}

Mono-W and mono-Z searches

Some of the potential signatures

Mono-lepton

$$q \bar{q}
ightarrow W \chi \bar{\chi} \,$$
 with $W
ightarrow \ell
u$

- Main background is $q\bar{q} \to W \to \ell \nu$
- You have to understand you SM background very well!
- Limits are not as strong as monojets

Future prospects

- Mono-X searches at the LHC have yet to detect any sign of WIMP dark matter
- LHC Run 2 will greatly expand sensitivity... stay tuned!

Assuming no signal, projected 95% CL limits

Thanks!

Main sources:

http://arxiv.org/abs/1411.1559 http://arxiv.org/abs/1502.01518v2 http://inspirehep.net/record/1327052?In=en http://inspirehep.net/record/1260901?In=en https://inspirehep.net/record/1260852?In=en http://arxiv.org/abs/1309.4017 https://atlas.web.cern.cb/Atlas/GROUPS/PHYSIC

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ PUBNOTES/ATL-PHYS-PUB-2014-007/