

Detecting rare events using optical bolometers with transition edge sensors.

Alexey Drobizhev Physics 290E Wednesday 14 October 2015 UC Berkeley

Outline

- Overview of bolometric detection principles
- CUORE experiment as state of the art large conventional bolometric detector
 - overview
 - measurements
 - energy resolution
 - backgrounds
 - limited capacity for active background rejection (anticoincidence)
- Transition Edge Sensors (TES's)
 - overview
 - operation theory

- tungsten TES's
- multilayer TES's
- bilayer TES R&D by Kolomensky group at UC Berkeley
- Optical bolometers
 - Scintillating bolometers
 - overview
 - CRESST II as state of the art example
 - Cherenkov light bolometers
 - Neganov-Luke amplification for light detectors

Bolometers: general principles

• Detection of thermal signatures of absorbed particles:

$$\Delta T = \frac{E_{event}}{C_{absorber}}$$

- Low T (10mK–100mK):
 - minimization of $C_{absorber}$
 - achieved using Dilution Refrigerator
- Fundamental limit on energy resolution very low:

$$\Delta E_{limit} \sim \sqrt{kCT^2}$$

• Attractive for low-background, rare event searches like Dark Matter and $0\nu\beta\beta$.

CUORE: example of modern day "traditional" bolometric detector

(w/o TES or optical channel)

CUORE

- <u>Cryogenic Underground Observatory for Rare</u> <u>Events.</u>
- Bolometric search for $0\nu\beta\beta$ in ¹³⁰Te (with secondary topics $2\nu\beta\beta$, axions, and others).
- A good practical example of currently-running/ soon-to-run practical ton-scale bolometric detector with *only a thermal channel*.
- 988 TeO2 $5x5x5cm^3$ crystals in 19 towers of 52: source and absorber, $m_{isotope} = 204kg$.
- $T_{base} \leq 10mK$
- Commissioning ongoing, data in 2016.
- CUORE-0—single CUORE tower, turned off summer 2015, results spring 2015 (2y data).

CUORE: measurements

6

• $5x5x5cm^3$ TeO₂ at 10mK:

$$\Delta T_{event} = \frac{E_{event}}{C_{crystal}}$$

with $C_{crystal}^{-1} \approx 100 \mu K/MeV$

• Readout with Ge NTD thermistor:

$$R_{NTD} = R_0 e^{\sqrt{T_0/T}}$$

CUORE: energy resolution performance

 $\Delta E_{limit} \sim \sqrt{kCT^2} \sim 10eV \quad \Delta E_{CUORE-0} \sim 5keV \ FWHM$ K. Alfonso et al. arxiv: 1504.02454 $at \sim 2.6MeV \ (^{208}Tl \ \gamma \ line)$

CUORE: background performance

- Passive suppression to 0.02 counts/ keV/kg/y (CUORE-0), expected 0.01 counts/keV/kg/y for CUORE.
- Q=2527 keV—high energy edge of γ region, but away from major peaks due to good energy resolution.
- Primary background is degraded α's.

2000

3000

A. Drobizhev

1000

 10^{-1}

10-2

Event Rate [counts/keV/kg/y]

CUORE: anti-coincidence background rejection

- Only thermal channel, NTD readout \Rightarrow only energy measurement \Rightarrow not possible to distinguish α , β , γ , μ , etc.
- Anti-coincidence:
 - $2\nu\beta\beta$, $0\nu\beta\beta$ events 1 crystal.
 - Some surface α 's 2 crystals nuclear recoil back into crystal, α absorbed on adjacent crystal.
 - Some γ 's multiple crystals (Compton length 10-20cm).
 - Cosmic μ 's—multiple crystals.

CUORE: anti-coincidence background rejection

CUORE-0 Background Multiplicity

CUORE-0 Background Multiplicity

Physics 290E 10/14/2015

Transition Edge Sensors (TES's): improved phonon signal readout

Transition Edge Sensors: overview

- Temperature sensor based on superconducting transition of a metal or alloy.
- In narrow region around T_C , R(T) much more sensitive than exponential.
- Typically read out by SQUID \Rightarrow low-T preamp \Rightarrow lower noise (than room-T preamp).
- 2 primary types in use:
 - W (tungsten) (α and β phases)
 - Bilayer or multilayer sample of superconducting and non-superconducting metals (e.g. Ir/Au).
- Main challenge/compromise for rare event bolometers: sufficiently low T_C for low temperature operation.
- Long history of use outside rare event searches for photon detection.

Transition Edge Sensors: operation theory

http://web.mit.edu/figueroagroup/ucal/ucal_tes/

- figure of merit α —steepness of transition
- low operating T, low C of absorber (interconnected), large α improve energy resolution ΔE .
- low C and large α also lower bandpass
 ⇒ best performing TES must be very well tuned for precise application.
 - Example: typical X-ray TES @ 100mK has badpass ~0.1keV -~10keV w/ΔE ~ 1.5eV FWHM (plot)
- low R (+ electrothermal feedback) ⇒ possibility of larger signal bandwidth (than NTD) ⇒ possibility of pulse shape discrimination

Tungsten (W) TES's

Four tungsten transition-edge sensors with aluminum wiring. The upper two are 25 μm by 25 μm . The lower two sensors are 50 μm by 50 $\mu m.$

• 2 crystalline forms:

- 1. α : BCC structure, isometric grains. T_C ~ 10mK 15mK
- 2. β : A15 cubic, columnar habit. $T_C \sim 1K 4K$
- \sim 2 forms can be mixed to achieve intermediate T_C's.
- Pure α (or β) sample very hard to fabricate:
 - Most examples' $T_C > 15$ mK necessitates higher operating temperature.
 - Irregularity/high rejection rate
 - → O.K. for small detectors like CRESST II; problematic for tonscale experiments like CUPID (planned CUORE successor) or EURECA (planned CRESST successor).

Examples of use:

- CRESST II (close to pure α -W; main and light bolometers)
- CDMS ($T_C \approx 90$ mK, mixed phases; in athermal phonon collector of Ge detector)

Multilayer TES's

- 2+ O(100µm) layers of superconducting and normal metals sputtered or atomic-deposited on substrate.
 - Ir/Au, Ir/Pt, Ir/IrMn/Au, Ir/Pd/Au, Mo/Au, Mo/Cu, Mo/Ti, Al/ Au, Al/Ti/Au, others...
- T_C of superconducting metal is suppressed by leakage of carriers from normal metal layer.
- Usadel theory (right) to estimate T_C of bilayer—impossible to get transmission parameter, empirical methods are necessary.
- Motivations for developing multilayer TES's :
 - Theoretically possible to set T_C precisely, including very cold <15mK transitions (no need to compromise like with W).
 - Dedicated clean, high vacuum, high precision fabrication facility should allow for cheaper and more robust production than W TES's for large detectors.
- Most practical examples now: T_C 's ~100mK; used for X-rays, cosmology, nonproliferation R&D, etc.
- No workable examples with $T_C < 20mK 30mK$

$$T_{c} = T_{c_{0}} \left[\frac{d_{s}}{d_{0}} \frac{1}{1.13(1+1/\alpha)} \frac{1}{t} \right]^{\alpha}$$

$$\frac{1}{d_{0}} = \frac{\pi}{2} k_{B} T_{c_{0}} \lambda_{f}^{2} n_{s},$$

$$\alpha = d_{n} n_{n} / d_{n} n_{s}.$$

 n_n, n_s — densities of states d_n, d_s — film thicknesses T_{C_0} — natural s.c. layer T_C λ_f — Fermi λ in normal metal t — unitless interface transmission parameter O(1)

K.D. Irwin, G.C. Hilton. Transition-Edge Sensors. Chapter - Cryogenic Particle Detection Volume 99 of the series Topics in Applied Physics pp 63-150

Low-T_C bilayer TES R&D at Berkeley

sample characterization jigs w/ bilayers inside

Channel 01 Up Scans (60Co)

- Dilution refrigerator facility:
 - Oxford Instruments cryogen-free DR:
 - $P_{cooling}(100 \text{mK}) \geq 400 \mu \text{W}$ (record ~450µW)
 - $T_{hase} \leq 10 \text{mK} \text{ (record } \sim 6 \text{mK} \text{)}$
 - Readout:
 - AC370 resistance bridges
 - new Magnicon SQUID electronics
 - Thermometry:
 - RuO₂ resistance thermometers down to 20mK - 30mK
 - ⁶⁰Co nuclear orientation thermometer down to base temperature
 - new Magnicon noise thermometer down to base temperature.
- Ir/Au, Ir/Pt, Ir/IrMn/Au, Ir/Pd/Au bilayers being fabricated and tested in collaboration with ANL.
- Next step: light detector w/ meandered bilayer TES with semiconductor absorber.

Optical bolometers:

active background discrimination

Scintillating bolometers

- Secondary bolometer w/thin wafer as absorber to detect scintillation light from main bolometer crystal.
- Heat signature + light collection:
 - phonons: best E resolution
 - photons: separation of nuclear recoil (α, n or WIMP) from electron recoil (γ or β) via light yield, quenching.

Scintillating bolometers: CRESST II

- <u>Cryogenic Rare Event S</u>earch with <u>Superconducting T</u>hermometers II
- European Dark Matter experiment at Gran Sasso.
- Main strength: low WIMP mass sensitivity.
- 18 modules:
 - clean Cu structure
 - scintillating 3M reflector
 - phonon detector: 300g CaWO₄ scintillating crystal (total 5.4kg)
 - photon detector: Si-coated Al_2O_3 or Si absorber.
 - readout: W TES w/ $T_C \sim 10mK$ (closer to ~13mK, pure α W)
 - Variations in crystal attachment module to module.

http://www.cresst.de/material.html

Schematic of the TES and its connections on the original CRESST-II phonon detector

Scintillating bolometers: CRESST II

• Example from CRESST II : less light from nuclear recoil (from WIMP, α , n) than from electron recoil (from γ or β) in CaWO₄ crystals (readout w/ W TES; light detection w/ Si-coated sapphire absorber and W TES).

Left: schematic of bands. <u>Right</u>: data from calibration with neutrons.

* negative light yield values stem from amplitude fitting procedure that allows for negative amplitudes for unbiased treatment of noise. Phenomenon not unique to CRESST II.

A. Drobizhev

Physics 290E 10/14/2015

Scintillating bolometers: CRESST II

• Example from CRESST II : dark matter data.

G. Angloher et al. arXiv:1509.01515v1

Cherenkov bolometers

- Analogous hardware configuration to scintillating bolometers
- Instead of scintillation photons, Cherenkov photons are detected:
 - β 's radiate; slow α 's and many n's do not.
 - \Rightarrow WIMPS would not radiate
- degraded α's a major background in cryogenic detectors ⇒ Cherenkov detectors not very useful for DM searches.
- Active interest from 0vββ researchers due to necessity of including isotope of interest in crystal (difficult w/ scintillators) and simple binary discrimination
 - challenging weak signals (10's of photons, thresholds as low as 10eV).

Improvement of CUORE performance with complete rejection of α background (simulation)

Neganov-Luke amplification

- Devices being developed in framework of both direct DM searches (EURECA) and 0vββ searches (CUPID).
- Semiconductor absorber equipped with electrodes, biased.
- Created electrons & holes drifted to create stronger thermal signal:

$$G = 1 + \frac{e \cdot V_{NL}}{E_{ph}/\eta}$$

 η —quantum efficiency of electron-hole pair production, E_{ph} —photon energy, V_{NL} —applied voltage

- Likely essential for Cherenkov bolometers for 0vββ.
- Also seriously improves CaWO₄ scintillating bolometer performance.

thank you for your attention