

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Resummation for Photon Isolation

Thomas Becher University of Bern

JHEP 01 (2023) 005 with Samuel Favrod and Xiaofeng Xu

SCET 2023, Berkeley March 30, 2023

11121.

Hard photons are a fundamental probe of shortdistance physics, of interest both in the context of SM and BSM physics ...

... but also pose experimental and theoretical challenges.

Challenges

- Background from decays of energetic π^0 and η , producing collimated photon pairs
 - Isolate photon from hadronic radiation to suppress this background \rightarrow large logs

Fixed-energy cone isolationIsolation-cone
of radius RIsolated

- Traditionally $E_{\text{cone}}^T(R) < E_0 = \epsilon_{\gamma} E_{\gamma}^T$
- ATLAS sets $E_0 = \epsilon E_{\gamma}^T + E_{\text{th}}^T$ with

 $\epsilon = 0.0042$ with $E_{\rm th}^T = 4.8 \,{\rm GeV}$

- Fragmentation contributes to cross section
- All LHC measurements use fixed cone.

Smooth-cone isolation Frixione '98

- No energetic collinear radiation \rightarrow no fragmentation
 - big technical simplification for NNLO computations
- Experimentally not directly realizable. For a study of discretized version, see hep-ph/1003.1241

NLO predictions

Publicly available fixed-cone NLO only from

- Jetphox (Catani et al. '99), Diphox (Binoth et al. '99)
 - no longer actively maintained
- MCFM since 2011

Fragmentation functions (and related code) are 25 years old, based on simple models.

Other NLO codes such as MG5_aMC@NLO restricted to smooth-cone isolation.

Have verified (thanks to Alex Huss!) that different codes produce compatible reference cross sections.

NNLO predictions

- prompt photon Campbell et al. '17, Chen et al. 19
- diphoton Catani et al. 11, Campbell et al. 16, Gehrmann et al. '20
- tri-photon Chawdhry et al. '20, Kallweit et al. '20

but before last year only with smooth-cone isolation

- papers choose values of n and ε_{γ} that give similar NLO values as fixed-cone isolation
- unknown systematic uncertainty, unsatisfactory in view of the few % accuracy of measurements

Proposal to use fixed cone with smooth cone in the center "hybrid cone" but not completely satisfactory. Gehrmann et. al. '21

New: First fixed-cone NNLO results Chen, Gehrmann, Glover, Höfer, Huss, Schürmann '22 using antenna subtraction; extension to fragmentation: Gehrmann, Schürmann '22.

Outline

Isolation requirement induces small parameters into cross section

- higher-order corrections enhanced by powers of In(ε_γ) and In(R)
- will illustrate at NLO that this can lead to a breakdown of the fixed-order expansion

Factorization of isolation effects for small *R* using SCET yields

- simple analytic understanding of isolation effects
- **resummation** of $ln(\varepsilon_{\gamma})$ and ln(R) using RG evolution
- relation between smooth- and fixed-cone in the limit of small $\varepsilon_{\rm Y}$

Motivation: pathologies of NLO perturbation theory

For all cross section computations we will use

$$\begin{split} E_T^{\gamma} > E_T^{\min} &= 125 \, \text{GeV} & |\eta_{\gamma}| < 2.37 \\ \alpha_s(M_Z) &= 0.119 & \alpha_{\text{EM}} = 1/132.507 \\ \sqrt{s} &= 13 \, \text{TeV} & \text{NNPDF23_nlo_as_0119_qed_mc} \end{split}$$

and for fixed-order results we set

$$\mu_f = \mu_r = 125 \,\mathrm{GeV}$$

Fixed-cone results involve fragmentation functions and associated scale. For fixed-order, we set

$$\mu_a = 125 \,\mathrm{GeV}$$

Fixed-Order Pathologies (I)

 σ (isolated) with smooth-cone, $n = 1, \varepsilon_{\gamma} = 1$

σ(inclusive) with Gehrmann deRidder, Glover '98fragmentation functions

- Should have: σ (isolated) < σ (inclusive) but at NLO, the isolation dependent part of cross section is proportional to ln(*R*)
 - Breakdown of FOPT for $R \leq 0.2! R = 0.2$ is the default value for ATLAS diphoton analyses
 - Same breakdown arises for fixed-cone isolation Catani, Fontannaz, Guillet and Pilon in JHEP 05, 028 (2002)

Fixed-Order Pathologies (II)

 σ (isolated) with fixed-cone isolation.

BFG (Bourhis, Fontannaz and Guillet, '98) fragmentation functions

- σ (isolated) should monotonically decrease as ε_{γ} is lowered
- NLO isolation effects are linear in ε_{γ} for small ε_{γ} (soft quark...)
 - coefficient enhanced by ln(R), unphysical for small R
- ATLAS isolation corresponds to $\varepsilon_{\gamma} = 0.04$ for $E_T^{\gamma} = 125 \, \text{GeV}$

Fixed-Order Pathologies (II)

 σ (isolated) with fixed-cone isolation.

BFG (Bourhis, Fontannaz and Guillet, '98) fragmentation functions

- σ (isolated) should monotonically decrease as ε_{γ} is lowered
- NLO isolation effects are linear in ε_{γ} for small ε_{γ} (soft quark...)
 - coefficient enhanced by ln(R), unphysical for small R
- ATLAS isolation corresponds to $\varepsilon_{\gamma} = 0.04$ for $E_T^{\gamma} = 125 \,\mathrm{GeV}$

Factorization and resummation for small cone radius *R*

Factorization

Becher, Favrod, Xu, 2208.01554

For small *R* all isolation effects can be factorized into a cone fragmentation function $\mathcal{F}_{i \rightarrow \gamma}$

$$\frac{\mathrm{d}\sigma(E_0,R)}{\mathrm{d}E_{\gamma}} = \frac{\mathrm{d}\sigma_{\gamma+X}^{\mathrm{dir}}}{\mathrm{d}E_{\gamma}} + \sum_{i=q,\bar{q},g} \int dz \frac{\mathrm{d}\sigma_{i+X}}{\mathrm{d}E_i} \mathcal{F}_{i\to\gamma}(z,E_{\gamma},E_0,R) + \mathcal{O}(R)$$

Analogous to factorization of non-perturbative effects, but $\mathcal{F}_{i \rightarrow \gamma}$ includes perturbative part associated with isolation.

Cone fragmentation function $\mathcal{F}_{i \rightarrow \gamma}$ contains all particles collinear to photon

Cone fragmentation function $\mathcal{F}_{i \rightarrow \gamma}$

perturbative, scales $E_{\gamma} R$ and $E_0 R$

NLO cone fragmentation functions

 $\mathcal{F}_{q \to \gamma}(z, E_{\gamma}, E_0, R, \mu) = \mathcal{F}_{q \to \gamma}^{\text{in}}(z, E_{\gamma}, E_0, R, \mu) + \mathcal{F}_{q \to \gamma}^{\text{out}}(z, R E_{\gamma}, \mu)$

outside part is independent of isolation

$$\mathcal{F}_{q \to \gamma}^{\text{out}}(z, R E_{\gamma}) = \frac{\alpha_{\text{EM}} Q_q^2}{2\pi} \left\{ -P(z) \ln \left(\frac{R^2 (2E_T^{\gamma})^2}{\mu^2} (1-z)^2 \right) - z \right\}$$
quark to photon splitting function $P(z) = \frac{1 + (1-z)^2}{z}$

Inside part

Smooth-cone isolation

$$\mathcal{F}_{q \to \gamma}^{\rm in}(z, E_{\gamma}, E_0, R, \mu) = \frac{\alpha_{\rm EM} Q_q^2}{2\pi} P(z) \frac{1}{n} \ln\left(\frac{z\,\epsilon_{\gamma}}{1-z}\right) \theta\left(z - \frac{1}{1+\epsilon_{\gamma}}\right)$$

Note *R* independence!

Fixed-cone isolation

$$\mathcal{F}_{i\to\gamma}^{\rm in}(z,R,E_{\gamma},E_{0},\mu) = \left[\mathcal{D}_{i\to\gamma}(z,\mu) + \sum_{k=q,\bar{q}} \delta_{ik} \mathcal{I}_{k\to\gamma}^{\rm in}(z,R,E_{\gamma},\mu)\right] \theta\left(z - \frac{1}{1+\epsilon_{\gamma}}\right)$$

$$\mathcal{I}_{q \to \gamma}^{\text{in}}(z, R, E_{\gamma}, \mu) = \frac{\alpha_{\text{EM}} Q_q^2}{2\pi} \left\{ P(z) \ln\left(\frac{R^2 (2E_T^{\gamma})^2}{\mu^2} (1-z)^2\right) + z \right\}$$

Isolation parameter dependence

Interesting to look at difference to reference cross section

$$\Delta \sigma = \sigma \left(\epsilon_{\gamma}, n, R \right) - \sigma \left(\epsilon_{\gamma}^{\text{ref}}, n^{\text{ref}}, R^{\text{ref}} \right)$$

since direct part drops out:

$$\Delta \sigma = \sum_{i=q,\bar{q}} \int_{E_T^{\min}}^{\infty} dE_i \int_{z_{\min}}^1 dz \frac{d\sigma_{i+X}}{dE_i} \Delta \mathcal{F}_{i\to\gamma}$$

Smooth- vs fixed-cone isolation

- For fixed cone also inside part of $\mathcal{F}_{i\to\gamma}$ has $\ln(R)$ contribution, which is ε_{γ} dependent.
 - For $\varepsilon_{\gamma} \rightarrow 0$ inside part vanishes and one recovers smooth-cone *R*-dep!

- More generally: for small ε_{γ} the inside part at NLO becomes small
 - Non-perturbative fragmentation suppressed by ε_{γ}
- and at NLO the following properties hold
 - In(*R*) dependence only from outside part
 - All isolation prescriptions become identical!
- but at NNLO differences from out-in terms!

Resummation of In(R) terms

- $\mathcal{F}_{i \rightarrow \gamma}$ fullfills same DGLAP evolution equation as standard fragmentation function
- Solve DGLAP equation numerically to resum ln(R) enhanced higher-order contributions
 - Implemented evolution in moment space, interface to tree-level generator

In(R) resummation

- Plot shows difference to reference NLO cross section
- Resummation cures pathological fixed-order behavior!

Factorization and resummation for small isolation energy E_0

For fixed-cone isolation, the energy inside the cone is always much smaller than the photon energy, e.g.

$$E_{\text{cone}}^T(R) < E_0 = \epsilon_{\gamma} E_{\gamma}^T$$

For ATLAS $E_0 \gtrsim 5$ GeV

- Only soft radiation inside cone
- large non-global logarithms, associated with the energy ratio ε_{γ}
- perturbation theory at low scale RE₀
- fragmentation is suppressed

- Resum both $ln(\epsilon_{\gamma})$ and ln(R).
- Lowest scale is $R E_0 \ge 1$ GeV for ATLAS !

- Isolation cone is prime example of non-global observable
- Complicated pattern of higher-order terms, not captured by standard resummation methods. Even leading NGLs (α_s L)ⁿ do not simply exponentiate! Dasgupta, Salam '02
 - Use ngl-resum to resum leading NGLs Balsiger, Becher, Ferroglia '20 after boosting to frame where cone is hemisphere
 - see Nicolas Schalch's talk for progress on resummation of subleading NGLs.

$$\int_{0}^{1} d\widetilde{\Theta} \left\langle \mathcal{J}_{q \to \gamma+q} \left(\widetilde{\Theta}, R E_{\gamma}, z, \mu_{j} \right) \mathcal{U}_{q}^{\mathrm{LL}}(\widetilde{\Theta}, t) \right\rangle$$
$$= \frac{Q_{i}^{2} \alpha_{\mathrm{EM}}}{2\pi} \Big[-P(z) \ln \left(\frac{\delta^{2} Q^{2}}{\mu_{j}^{2}} (z-1)^{2} z^{2} \right) - z + 2P(z) \int_{0}^{1} d\widetilde{\Theta} \left[\frac{1}{\widetilde{\Theta}} \right]_{+} \mathcal{U}_{q}^{\mathrm{LL}}(\widetilde{\Theta}, t) \Big]$$

• NGLs much larger than global logs. Two-loop coefficient

$$-31.5 = -43.7$$
 ("non-global") $+ 12.2$ ("global")

Resummation of $\ln(R)$ and $\ln(\varepsilon_{\gamma})$

- For the full cross section, add direct part $\sigma^{\rm dir} \approx 290\,{\rm pb}$
- Note: both resummations lower the cross section!

Resummation of $\ln(R)$ and $\ln(\varepsilon_{\gamma})$

- For the full cross section, add direct part $\sigma^{\rm dir} \approx 290\,{\rm pb}$
- Note: both resummations lower the cross section!

Resummation of $\ln(R)$ and $\ln(\varepsilon_{\gamma})$

• For the full cross section, add direct part $\sigma^{\rm dir} \approx 290\,{
m pb}$

A simple relation

From factorization theorem, we can derive a relation between smooth- and fixed-cone isolation

$$\Delta \sigma = \sigma_{\text{fixedcone}}(R, \epsilon_{\gamma}) - \sigma_{\text{smoothcone}}(R, \epsilon_{\gamma}^{\text{ref}}, n)$$

in the limit $R \rightarrow 0$ and $\varepsilon_{\gamma} \rightarrow 0$:

$$\Delta \sigma = \sum_{i=q,\bar{q}} \int_{E_T^{\min}}^{\infty} dE_i \int_{z_{\min}}^1 dz \frac{d\sigma_{i+X}}{dE_i} \frac{Q_q^2 \alpha_{\rm EM}}{\pi} \frac{C_F \alpha_s}{4\pi} P(z) \left[\frac{\pi^2}{3} \ln \frac{\epsilon_{\gamma}}{\epsilon_{\gamma}^{\rm ref}} + 2n\,\zeta_3 \right]$$

Can be used to convert NNLO smooth-cone into fixed-cone results. For standard setup and $\epsilon_{\gamma} = \epsilon_{\gamma}^{\rm ref}$

$$\Delta \sigma = -1.3 \,\mathrm{pb}$$

Conclusions & Outlook

- Have performed a detailed analysis of QCD effects associated with photon isolation
 - Factorization of isolation effects for small *R*
 - Lowest scale is $R E_0 \ge 1 \text{ GeV}$
 - First resummation of both $\ln(\varepsilon_{\gamma})$ and $\ln(R)$ effects
 - numerically relevant for ATLAS isolation, crucial for R = 0.2
 - With some effort, could extend accuracy of resummations by one order and match to NNLO
- Formalism provides analytical understanding of isolation
 - Study parameter dependence, convert between isolation schemes, ...

Event: 362204 Event: 3323816408 2018-09-29 15:34:04 CEST