Resummation for Photon Isolation

Thomas Becher
University of Bern

JHEP 01 (2023) 005 with Samuel Favrod and Xiaofeng Xu
SCET 2023, Berkeley
March 30, 2023

photon +2 jets

diphotons

photon + top

Hard photons are a fundamental probe of shortdistance physics, of interest both in the context of SM and BSM physics ...
... but also pose experimental and theoretical challenges.

Challenges

- Fragmentation

- Background from decays of energetic π^{0} and η, producing collimated photon pairs
- Isolate photon from hadronic radiation to suppress this background \rightarrow large logs

Fixed-energy cone isolation

Isolation-cone of radius R

Isolated

- Traditionally $E_{\text {cone }}^{T}(R)<E_{0}=\epsilon_{\gamma} E_{\gamma}^{T}$
- ATLAS sets $E_{0}=\epsilon E_{\gamma}^{T}+E_{\mathrm{th}}^{T}$ with

$$
\epsilon=0.0042 \text { with } E_{\mathrm{th}}^{T}=4.8 \mathrm{GeV}
$$

- Fragmentation contributes to cross section
- All LHC measurements use fixed cone.

Smooth-cone isolation fixione '98

$$
E_{\text {cone }}^{T}(r)<E_{0}(r)=\epsilon_{\gamma} E_{\gamma}^{T} \chi(r) \text { for all } r<R
$$

$$
\chi(r)=\left(\frac{1-\cos r}{1-\cos R}\right)^{n}
$$

- No energetic collinear radiation \rightarrow no fragmentation
- big technical simplification for NNLO computations
- Experimentally not directly realizable. For a study of discretized version, see hep-ph/1003.1241

NLO predictions

Publicly available fixed-cone NLO only from

- Jetphox (Catani et al. '99), Diphox (Binoth et al. '99)
- no longer actively maintained
- MCFM since 2011

Fragmentation functions (and related code) are 25 years old, based on simple models.

Other NLO codes such as MG5_aMC@NLO restricted to smooth-cone isolation.

Have verified (thanks to Alex Huss!) that different codes produce compatible reference cross sections.

NNLO predictions

- prompt photon Campbell et al. '17, Chen et al. 19
- diphoton Catani et al. 11, Campbell et al. 16, Gehrmann et al. '20
- tri-photon Chawdhry et al. '20, Kallweit et al. '20 but before last year only with smooth-cone isolation
- papers choose values of n and ε_{γ} that give similar NLO values as fixed-cone isolation
- unknown systematic uncertainty, unsatisfactory in view of the few \% accuracy of measurements

Proposal to use fixed cone with smooth cone in the center "hybrid cone" but not completely satisfactory. Gehrmann et. al. '21

New: First fixed-cone NNLO results Chen, Gehrmann, Glover, Höfer, Huss, Schürmann '22 using antenna subtraction; extension to fragmentation: Gehrmann, Schürmann '22.

Outline

Isolation requirement induces small parameters into cross section

- higher-order corrections enhanced by powers of $\ln \left(\varepsilon_{\gamma}\right)$ and $\ln (R)$
- will illustrate at NLO that this can lead to a breakdown of the fixed-order expansion

Factorization of isolation effects for small R using SCET yields

- simple analytic understanding of isolation effects
- resummation of $\ln \left(\varepsilon_{\gamma}\right)$ and $\ln (R)$ using $R G$ evolution
- relation between smooth- and fixed-cone in the limit of small ε_{γ}

Motivation: pathologies of NLO perturbation theory

For all cross section computations we will use

$$
\begin{array}{cc}
E_{T}^{\gamma}>E_{T}^{\min }=125 \mathrm{GeV} & \left|\eta_{\gamma}\right|<2.37 \\
\alpha_{s}\left(M_{Z}\right)=0.119 & \alpha_{\mathrm{EM}}=1 / 132.507 \\
\sqrt{s}=13 \mathrm{TeV} & \text { NNPDF23_nlo_as_0119_qed_mc }
\end{array}
$$

and for fixed-order results we set

$$
\mu_{f}=\mu_{r}=125 \mathrm{GeV}
$$

Fixed-cone results involve fragmentation functions and associated scale. For fixed-order, we set

$$
\mu_{a}=125 \mathrm{GeV}
$$

Fixed-Order Pathologies (I)

σ (isolated) with smooth-cone, $n=1, \varepsilon_{\gamma}=1$
σ (inclusive) with Gehrmann de Ridder, Glover '98
fragmentation functions

- Should have: σ (isolated) < σ (inclusive) but at NLO, the isolation dependent part of cross section is proportional to $\ln (R)$
- Breakdown of FOPT for $R \leqslant 0.2$! $R=0.2$ is the default value for ATLAS diphoton analyses
- Same breakdown arises for fixed-cone isolation Catani, Fontannaz, Guillet and Pilon in JHEP 05, 028 (2002)

Fixed-Order Pathologies (II)

σ (isolated) with fixed-cone isolation.

BFG (Bourhis, Fontannaz and Guillet, '98) fragmentation functions

- σ (isolated) should monotonically decrease as ε_{γ} is lowered
- NLO isolation effects are linear in ε_{γ} for small ε_{γ} (soft quark...)
- coefficient enhanced by $\ln (R)$, unphysical for small R
- ATLAS isolation corresponds to $\varepsilon_{\gamma}=0.04$ for $E_{T}^{\gamma}=125 \mathrm{GeV}$

Fixed-Order Pathologies (II)

σ (isolated) with fixed-cone isolation.

BFG (Bourhis, Fontannaz and Guillet, '98) fragmentation functions

- σ (isolated) should monotonically decrease as ε_{γ} is lowered
- NLO isolation effects are linear in ε_{γ} for small ε_{γ} (soft quark...)
- coefficient enhanced by $\ln (R)$, unphysical for small R
- ATLAS isolation corresponds to $\varepsilon_{\gamma}=0.04$ for $E_{T}^{\gamma}=125 \mathrm{GeV}$

Factorization and resummation for small cone radius R

Factorization

Becher, Favrod, Xu, 2208.01554

For small R all isolation effects can be factorized into a cone fragmentation function $\mathcal{F}_{i \rightarrow \gamma}$

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma\left(E_{0}, R\right)}{\mathrm{d} E_{\gamma}}=\frac{\mathrm{d} \sigma_{\gamma+X}^{\mathrm{dir}}}{\mathrm{~d} E_{\gamma}} \\
& +\sum_{i=q, \bar{q}, g} \int d z \frac{\mathrm{~d} \sigma_{i+X}}{\mathrm{~d} E_{i}} \mathcal{F}_{i \rightarrow \gamma}\left(z, E_{\gamma}, E_{0}, R\right)+\mathcal{O}(R)
\end{aligned}
$$

Analogous to factorization of non-perturbative effects, but $\mathcal{F}_{i \rightarrow \gamma}$ includes perturbative part associated with isolation.

Cone fragmentation function $\mathcal{F}_{i \rightarrow \gamma}$ contains all particles collinear to photon

$$
\frac{\mathrm{d} \sigma\left(E_{0}, R\right)}{\mathrm{d} E_{\gamma}}=\frac{\mathrm{d} \sigma_{\gamma+X}^{\mathrm{dir}}}{\mathrm{~d} E_{\gamma}}
$$

Cone fragmentation function $\mathcal{F}_{i \rightarrow \gamma}$

$$
\mathcal{F}_{i \rightarrow \gamma}(z, \mu)=\sum_{j=\gamma, q, \bar{q}, g} \mathcal{I}_{i \rightarrow j}\left(E_{\gamma} R, E_{0} R, \mu\right) \otimes \mathcal{D}_{j \rightarrow \gamma}(\mu)
$$

perturbative, scales $E_{\gamma} R$ and $E_{0} R$

NLO cone fragmentation functions

$$
\mathcal{F}_{q \rightarrow \gamma}\left(z, E_{\gamma}, E_{0}, R, \mu\right)=\mathcal{F}_{q \rightarrow \gamma}^{\text {in }}\left(z, E_{\gamma}, E_{0}, R, \mu\right)+\mathcal{F}_{q \rightarrow \gamma}^{\text {out }}\left(z, R E_{\gamma}, \mu\right)
$$

outside part is independent of isolation

$$
\mathcal{F}_{q \rightarrow \gamma}^{\text {out }}\left(z, R E_{\gamma}\right)=\frac{\alpha_{\mathrm{EM}} Q_{q}^{2}}{2 \pi}\left\{-P(z) \ln \left(\frac{R^{2}\left(2 E_{T}^{\gamma}\right)^{2}}{\mu^{2}}(1-z)^{2}\right)-z\right\}
$$

quark to photon splitting function $P(z)=\frac{1+(1-z)^{2}}{z}$

Inside part

Smooth-cone isolation

$$
\mathcal{F}_{q \rightarrow \gamma}^{\mathrm{in}}\left(z, E_{\gamma}, E_{0}, R, \mu\right)=\frac{\alpha_{\mathrm{EM}} Q_{q}^{2}}{2 \pi} P(z) \frac{1}{n} \ln \left(\frac{z \epsilon_{\gamma}}{1-z}\right) \theta\left(z-\frac{1}{1+\epsilon_{\gamma}}\right)
$$

Note R independence!
Fixed-cone isolation

$$
\begin{gathered}
\mathcal{F}_{i \rightarrow \gamma}^{\text {in }}\left(z, R, E_{\gamma}, E_{0}, \mu\right)=\left[\mathcal{D}_{i \rightarrow \gamma}(z, \mu)+\sum_{k=q, \bar{q}} \delta_{i k} \mathcal{I}_{k \rightarrow \gamma}^{\text {in }}\left(z, R, E_{\gamma}, \mu\right)\right] \theta\left(z-\frac{1}{1+\epsilon_{\gamma}}\right) \\
\mathcal{I}_{q \rightarrow \gamma}^{\text {in }}\left(z, R, E_{\gamma}, \mu\right)=\frac{\alpha_{\mathrm{EM}} Q_{q}^{2}}{2 \pi}\left\{P(z) \ln \left(\frac{R^{2}\left(2 E_{T}^{\gamma}\right)^{2}}{\mu^{2}}(1-z)^{2}\right)+z\right\}
\end{gathered}
$$

Isolation parameter dependence

Interesting to look at difference to reference cross section

$$
\Delta \sigma=\sigma\left(\epsilon_{\gamma}, n, R\right)-\sigma\left(\epsilon_{\gamma}^{\mathrm{ref}}, n^{\mathrm{ref}}, R^{\mathrm{ref}}\right)
$$

since direct part drops out:

$$
\Delta \sigma=\sum_{i=q, \bar{q}} \int_{E_{T}^{\min }}^{\infty} d E_{i} \int_{z_{\min }}^{1} d z \frac{d \sigma_{i+X}}{d E_{i}} \Delta \mathcal{F}_{i \rightarrow \gamma}
$$

Smooth- vs fixed-cone isolation

- For fixed cone also inside part of $\mathcal{F}_{i \rightarrow \gamma}$ has $\ln (R)$ contribution, which is ε_{γ} dependent.
- For $\varepsilon_{\gamma} \rightarrow 0$ inside part vanishes and one recovers smooth-cone R-dep!
- More generally: for small ε_{γ} the inside part at NLO becomes small
- Non-perturbative fragmentation suppressed by ε_{γ}
- and at NLO the following properties hold
- $\ln (R)$ dependence only from outside part
- All isolation prescriptions become identical!
- but at NNLO differences from out-in terms!

Resummation of $\ln (R)$ terms

- $\mathcal{F}_{i \rightarrow \gamma}$ fullfills same DGLAP evolution equation as standard fragmentation function
- Solve DGLAP equation numerically to resum $\ln (R)$ enhanced higher-order contributions
- Implemented evolution in moment space, interface to tree-level generator

$\ln (R)$ resummation

- Plot shows difference to reference NLO cross section
- Resummation cures pathological fixed-order behavior!

Factorization and resummation for small isolation energy E_{0}

For fixed-cone isolation, the energy inside the cone is always much smaller than the photon energy, e.g.

$$
E_{\mathrm{cone}}^{T}(R)<E_{0}=\epsilon_{\gamma} E_{\gamma}^{T}
$$

For ATLAS $E_{0} \approx 5 \mathrm{GeV}$

- Only soft radiation inside cone
- large non-global logarithms, associated with the energy ratio ε_{γ}
- perturbation theory at low scale $R E_{0}$
- fragmentation is suppressed

Factorization of $\mathcal{F}_{i \rightarrow \gamma}$

$$
\mathcal{F}_{i \rightarrow \gamma}\left(z, R E_{\gamma}, R E_{0}, \mu\right)=\sum_{l=1}^{\infty}\left\langle\mathcal{J}_{i \rightarrow \gamma+l}\left(\{\underline{n}\}, R E_{\gamma}, z, \mu\right) \otimes \mathcal{U}_{l}\left(\{\underline{n}\}, R E_{0}, \mu\right)\right\rangle
$$

energetic collinear outside cone
soft radiation inside cone

- Resum both $\ln \left(\varepsilon_{\gamma}\right)$ and $\ln (R)$.
- Lowest scale is $R \underset{27}{E_{0}} \gtrsim 1 \mathrm{GeV}$ for ATLAS !

Non-global logarithms (NGLs)

- Isolation cone is prime example of non-global observable
- Complicated pattern of higher-order terms, not captured by standard resummation methods. Even leading NGLs ($\left.a_{s} L\right)^{n}$ do not simply exponentiate! Dasgupta, Salam '02
- Use ngl-resum to resum leading NGLs Balsiger, Becher, Ferroglia '20 after boosting to frame where cone is hemisphere
- see Nicolas Schalch's talk for progress on resummation of subleading NGLs.

$$
\begin{aligned}
& \int_{0}^{1} d \widetilde{\Theta}\left\langle\mathcal{J}_{q \rightarrow \gamma+q}\left(\widetilde{\Theta}, R E_{\gamma}, z, \mu_{j}\right) \mathcal{U}_{q}^{\mathrm{LL}}(\widetilde{\Theta}, t)\right\rangle \\
& \quad=\frac{Q_{i}^{2} \alpha_{\mathrm{EM}}}{2 \pi}\left[-P(z) \ln \left(\frac{\delta^{2} Q^{2}}{\mu_{j}^{2}}(z-1)^{2} z^{2}\right)-z+2 P(z) \int_{0}^{1} d \widetilde{\Theta}\left[\frac{1}{\widetilde{\Theta}}\right]_{+} \mathcal{U}_{q}^{\mathrm{LL}}(\widetilde{\Theta}, t)\right]
\end{aligned}
$$

- NGLs much larger than global logs. Two-loop coefficient

$$
-31.5=-43.7 \text { ("non-global") }+12.2 \text { ("global" })
$$

Resummation of $\ln (R)$ and $\ln \left(\varepsilon_{\gamma}\right)$

- For the full cross section, add direct part $\sigma^{\text {dir }} \approx 290 \mathrm{pb}$
- Note: both resummations lower the cross section!

Resummation of $\ln (R)$ and $\ln \left(\varepsilon_{\gamma}\right)$

- For the full cross section, add direct part $\sigma^{\text {dir }} \approx 290 \mathrm{pb}$
- Note: both resummations lower the cross section!

Resummation of $\ln (R)$ and $\ln \left(\varepsilon_{\gamma}\right)$

- For the full cross section, add direct part $\sigma^{\text {dir }} \approx 290 \mathrm{pb}$

A simple relation

From factorization theorem, we can derive a relation between smooth- and fixed-cone isolation

$$
\Delta \sigma=\sigma_{\text {fixedcone }}\left(R, \epsilon_{\gamma}\right)-\sigma_{\text {smoothcone }}\left(R, \epsilon_{\gamma}^{\text {ref }}, n\right)
$$

in the limit $R \rightarrow 0$ and $\varepsilon_{\gamma} \rightarrow 0$:

$$
\Delta \sigma=\sum_{i=q, \bar{q}} \int_{E_{T}^{\min }}^{\infty} d E_{i} \int_{z_{\min }}^{1} d z \frac{d \sigma_{i+X}}{d E_{i}} \frac{Q_{q}^{2} \alpha_{\mathrm{EM}}}{\pi} \frac{C_{F} \alpha_{s}}{4 \pi} P(z)\left[\frac{\pi^{2}}{3} \ln \frac{\epsilon_{\gamma}}{\epsilon_{\gamma}^{\mathrm{ref}}}+2 n \zeta_{3}\right]
$$

Can be used to convert NNLO smooth-cone into fixed-cone results. For standard setup and $\epsilon_{\gamma}=\epsilon_{\gamma}^{\mathrm{ref}}$

$$
\Delta \sigma=-1.3 \mathrm{pb}
$$

Conclusions \& Outlook

- Have performed a detailed analysis of QCD effects associated with photon isolation
- Factorization of isolation effects for small R
- Lowest scale is $R E_{0} \gtrsim 1 \mathrm{GeV}$
- First resummation of both $\ln \left(\varepsilon_{\gamma}\right)$ and $\ln (R)$ effects
- numerically relevant for ATLAS isolation, crucial for $R=0.2$
- With some effort, could extend accuracy of resummations by one order and match to NNLO
- Formalism provides analytical understanding of isolation
- Study parameter dependence, convert between isolation schemes, ...

