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Heavy Mesons LCDAs: Why?

They arise in factorization theorems involving boosted heavy mesons

• B̄ meson
Hard processes at colliders:

W−

b

γ

ū

B−

boosted since ΛQCD ≪ mb ≪ mW

• D meson
Exclusive two‐body B̄ decays:

b

d̄

s

d̄

uc

B̄d K̄0

D0

considering ΛQCD ≪ mc ≪ mb

Three distinct physical scales to separate with EFT machinery!
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Light‐cone Distribution Amplitude: Definition in QCD
We take H as a pseudoscalar heavy meson and tnµ

+ a light‐like distance

⟨H(pH)|Q̄(0)/n+γ
5[0, tn+]q(tn+)|0⟩ = −ifHn+pH

∫ 1

0

du eiutn+pHϕ(u;µ)

ϕ(u) encodes the perturbative scalemH and the non‐perturbative ΛQCD

u = n+pq/n+pH ∈ [0, 1]

normalized to 1

highly asymmetric at
ren. scales µ ≲ mH

symmetric at scales
µ ≫ mH (from RGE)
[Efremov, Radyushkin, Brodsky, Lepage

1979,1980]
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Light‐cone Distribution Amplitude: Definition in HQET
In the limitmQ → ∞ we define the universal HQET LCDA

⟨Hv|h̄v(0)/n+γ
5[0, tn+]qs(tn+)|0⟩ = −iFstat(µ)n+v

∫ ∞

0

dω eiωtn+vφ+(ω;µ)

φ+(ω) ∼ 1/ΛQCD encodes only the hadronic physics of order ΛQCD

ω = n+pq/n+v ∈ [0,∞]

peaked at ω ∼ ΛQCD

φ+(ω) ∼ ω for ω → 0
[Grozin, Neubert ’96]

divergent normalization
perturbative for ω ≫ ΛQCD
[Lee, Neubert ’05]

valid at scales µ ≲ mH

We are looking for a factorization formula that connects both LCDAs!
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Collinear Factorization Picture
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Peak & Tail Separation
Working setup:

leading power (LP) in λ ≡ ΛQCD/mQ ≪ 1 and b ≡ mH/Q ≪ 1

factorization scale µ ∼ O(mQ) ⇒ highly asymmetric LCDA!
Goal: Integrating outmQ at one loop

We have to match separately
peak and tail to have a
consistent power counting
The two resulting functions
have to overlap in the region
λ ≪ u ≪ 1

We will merge them by
choosing a threshold
parameter δ
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SCET for Heavy Quarks (bHQET)
HQET field hv with highly boosted velocity v = (n+v, v⊥, n−v) ∼ (1b , 1, b)
interacts with soft‐collinear modes k ∼ (1b , 1, b)ΛQCD [Fleming, Hoang, Mantry, Stewart ’07]

Goal: write down an EFT homogeneous in b
⇒ same as SCET from QCD! (here we have 2 ways)
one instructive realization is given by the definition:

hn ≡

√
2

n+v

/n−/n+

4
hv

⇒
/n+/n−
4

hv =

√
n+v

2

1 + /v⊥
n+v

/n+

2
hn

the (exact!) relation between
HQET and bHQET field is

hv =

(
/n−/n+

4
+
/n+/n−
4

)
hv

=

√
n+v

2

(
1+

1 + /v⊥
n+v

/n+

2

)
hn

Lagrangian derivation [Dai, Kim, Leibovich 2021]

LHQET = h̄viv ·Dhv = . . . = h̄niv ·D
/n+

2
hn ≡ LbHQET
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Operator Definition
Operator in SCET (momentum space)

OC(u) =

∫
dt

2π
e−iutn+pH χ̄

(Q)
C (0) /n+γ

5 χC(tn+) with χC(x) = W †
C(x)ξC(x)

Feynman rules: Tree level −→
↓ One gluon from the Wilson lines

Crucial: the delta functions force the momentum fraction
coming out from the dot • to assume the value u
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Crucial: the delta functions force the momentum fraction
coming out from the dot • to assume the value u 7 / 13



Peak & Tail Matching

Final state scalings: pQ ∼
hard−collinear
(1, b, b2)Q (hc), pq ∼

soft−collinear
λ(1, b, b2)Q (sc)

Jet functions are given by hc loops (k ∼ (1, b, b2)Q)⇒ to all orders in αs:

• Peak u ∼ λ
if a hc gluon is emitted
from q̄ ⇒ u ∼ 1, outside

of the peak region!
(L ≡ ln µ

mH
)

Q

qu

ϕp(u) =
f̃H
fH

∫ ∞

0

dωJp(u, ω)φ+(ω)

Jp(u, ω) = θ(mH − ω)δ
(
u− ω

mH

)
Jpeak

Jpeak = 1 +
αsCF

4π

(
L2

2
+

L

2
+

π2

12
+ 2

)

• Tail u ∼ 1

hc loop insensitive to
sc q̄ momentum⇒ ω

independent jet function:
matching to local

operators!

Q

qu

Jtail(u) =
αsCF

4π

2ū

u

[
2(1 + u) ln

µ

umH
− u+ 1

]

ϕt(u) =
f̃H
fH

Jtail(u)
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2ū

u

[
2(1 + u) ln

µ

umH
− u+ 1

]

ϕt(u) =
f̃H
fH

Jtail(u)

8 / 13



Peak & Tail Matching

Final state scalings: pQ ∼
hard−collinear
(1, b, b2)Q (hc), pq ∼

soft−collinear
λ(1, b, b2)Q (sc)

Jet functions are given by hc loops (k ∼ (1, b, b2)Q)⇒ to all orders in αs:
• Peak u ∼ λ

if a hc gluon is emitted
from q̄ ⇒ u ∼ 1, outside

of the peak region!
(L ≡ ln µ

mH
)

Q

qu

ϕp(u) =
f̃H
fH

∫ ∞

0

dωJp(u, ω)φ+(ω)

Jp(u, ω) = θ(mH − ω)δ
(
u− ω

mH

)
Jpeak

Jpeak = 1 +
αsCF

4π

(
L2

2
+

L

2
+

π2

12
+ 2

)

• Tail u ∼ 1

hc loop insensitive to
sc q̄ momentum⇒ ω

independent jet function:
matching to local

operators!

Q

qu

Jtail(u) =
αsCF

4π

2ū
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More Details...
• Peak u ∼ λ

actually matching the massive hc field

χ
(Q)
C → Jpeak

√
n+v

2
W †

schn = Jpeak

√
n+v

2
W †

scYvh
(0)
n

• Tail u ∼ 1
We match into local bHQET

operators (OPE)

OC(u) = J+(u)O+ + J−(u)O−

two operators
(= decay constant matching)

O±
boost to RF
−−−−−→ 1

mHn±v
h̄v/n±γ

5qs

9 / 13



Merging of the Regions and LCDA Properties

ϕ(u) =
f̃H
fH

{
JpeakmHφ+(umH) , for u ∼ λ

Jtail(u) , for u ∼ 1

we have to check that
ϕp(u)|u≫λ

!
= ϕt(u)|u≪1

Properties of ϕ(u)

endpoint behaviour ✓
normalization = 1, using
M0(δmH) [Lee, Neubert 2005] ✓
RG evolution (ERBL) ✓

JpeakmHφ+(umH)|u≫λ = mHφ
asy
+ (umH)

=
αsCF

2πu

(
2 ln

µ

umH
+ 1

)
[Lee, Neubert 2005]

Jtail(u)|u≪1 =
αsCF

2πu

(
2 ln

µ

umH
+ 1

)
⇒ merge the functions with a “merging function” ϑ(u; δ, σ)

ϕ(u) = ϑ(u; δ, σ)ϕp(u) + (1− ϑ(u; δ, σ))ϕt(u)

δ sets the threshold in the overlap region, σ ∼ 10−2 the smoothness
• ϑ(u; δ, σ)|u≪δ = 1, • ϑ(u; δ, σ)|u≫δ = 0, • ϑ(u; δ, 0) = θ(δ − u)
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B̄ and D LCDAs at the Matching Scale

0.0 0.2 0.4 0.6 0.8 1.0

0

1
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4

NLO ∼10%
corrections
Shaded bands from
varying δ ± 15%
Perfect agreement
with expansion up
to 20 Gegenbauer
moments aMn (µ)
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Branching RatioW → Bγ: Numbers

QCD Collinear factorization: LCDA was modelled at 1 GeV
and evolved up tomW with ERBL kernel [Grossman, König, Neubert 2015]

HQET factorization: consideringmW ∼ mb ⇒ not resumming ln mb

mW
[Ishaq, Jia, Xiong, Yang 2019]

With our LCDA we merge the two frameworks and sum both ln mb

mW
and ln ΛQCD

mb

Br[GKN15] = (1.99± 0.17in
+0.03
−0.06 µh

+2.48
−0.80 λB

) · 10−12

BrHQET = (2.51± 0.21in
+0.19
−0.69 µb

+0.49
−0.40 β

+3.04
−0.95 λB

) · 10−12

Br[2023] = (2.54± 0.21in
+0.04
−0.07 µh

+0.07
−0.09 µb

+0.18
−0.13 δ

+0.59
−0.33 β

+2.86
−0.95 λB

) · 10−12

central value enhanced by almost 30% w.r.t. [GKN15]
poor convergence of HQET result denoted by large scale uncertainty
huge uncertainty due to poor knowledge of HQET LCDA
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QCD Collinear factorization: LCDA was modelled at 1 GeV
and evolved up tomW with ERBL kernel [Grossman, König, Neubert 2015]
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Summary

Derived factorization for heavy meson LCDA at LP in ΛQCD/mQ ✓

Built concrete and practical models for B̄ and D mesons ✓
Applied toW → Bγ: new optimized theoretical predictions ✓
Ready to apply to exclusive B̄ → D decays in the future!

Thank You!
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Peak Matching (u ∼ λ): Matching Equation
Matching equation

OC(u) =

∫ ∞

0

dωJp(u, ω)Oh(ω)

such that

⟨H(pH)|OC(u)|0⟩ = −ifHϕp(u)

⟨H(pH)|Oh(ω)|0⟩ = −if̃Hφ+(ω)
taking ⟨Q(pQ)q̄(pq)| • |0⟩ on both sides we can extract Jp at O(αs) from

⟨Qq̄|OC(u)|0⟩ ∝
[
δ
(
u− n+pq

n+pH

)
+

αsCF

4π
M (1)

(
u,

n+pq
n+pH

)]
⟨Qq̄|Oh(ω)|0⟩ ∝

[
δ
(
ω − n+pq

n+v

)
+

αsCF

4π
N (1)

(
ω,

n+pq
n+v

)]
where pq is the external soft‐collinear momentum of the spectator quark

Jp(u, ω) = θ(mH−ω)

[
δ(u− ω

mH
)+αsCF

4π

(
M (1)(u, ω

mH
)−mHN

(1)(umH , ω)

)]
the θ(mH − ω) comes from momentum conservation pH = pQ + pq
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Peak Matching (u ∼ λ): Result

The one loop jet function turns
out to be proportional to a

delta function (as the tree level)

⇒ the LCDA in the peak region
is very simple (L ≡ ln µ2

m2
H
)

ϕp(u) =
f̃H
fH

mHφ+(umH)

×
[
1 +

αsCF

4π

(
L2

2
+

L

2
+

π2

12
+ 2

)]
This form holds to all orders in αs:

Q

qu

If a hard‐collinear gluon
is emitted by q̄ ⇒ u ∼ 1,
contribution to the tail!
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Tail Matching (u ∼ 1): Matching Equation
The external momentum pq is fixed to be soft‐collinear

but u ∼ 1 ⇒ q̄ internal line has to be hard‐collinear (hc)
⇒ the hc loop integral is insensitive to pq ≪ pH
⇒ the tail jet function cannot depend on ω!

Q

qu

We match into local bHQET operators (OPE)

OC(u) = J+(u)O+ + J−(u)O−

⟨H(pH)|OC(u)|0⟩ = −ifHϕt(u)

⟨H(pH)|O±|0⟩ = −if̃H

two independent operators
as for the decay constant matching O±

boost to RF
−−−−−→ 1

mHn±v
h̄v/n±γ

5qs

Simple matching since SCET matrix el. starts at one‐loop and is purely hc

⟨Q(pQ)q̄(pq)|OC(u)|0⟩
u∼1

−−−−→ O(αs) ∝ J±(u)
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Tail Matching (u ∼ 1): Result
At one‐loop we find

Jtail(u) ≡ J+(u) + J−(u) =
αsCF

4π

2ū

u

[
(1 + u)(L− 2 lnu)− u+ 1

]
+O(α2

s)

⇒ completely perturbative expression for the QCD LCDA in the tail

ϕt(u) =
f̃H
fH

Jtail(u)

with the known HQET/QCD decay constant ratio [Eichten, Hill, ’90]

f̃H
fH

= 1 +
αsCF

4π

(
3

2
ln

µ2

m2
Q

+ 2

)
+O(α2

s)

notice ϕt(u) ∝ ū ⇒ satisfies the QCD LCDA endpoint behaviour at u → 1
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Evolution from ΛQCD tomW : Strategy
1 Model for HQET LCDA at µs = 1GeV

φ+(ω;µs) =

(
1 +

αsCF

4π

[
1

2
− π2

12

])
φmod
+ (ω;µs)

+ θ(ω −
√
eµs)φ

asy
+ (ω;µs) [Lee, Neubert ’05]

with φasy
+ (ω;µs) ≡ αsCF

2πω (ln µ2
s

ω2 + 1)

φmod
+ (ω, β;µs) three generalizations

of the exp. model (β = 0) [Grozin, Neubert ’96]

[Beneke, Braun, Ji, Wei ’18]

3 Matching obtaining ϕ(u;µ)
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QCD Factorization Summary [Grossman, König, Neubert 2015]

W−

b

γ

ū

B−

1/x contr.

W−

ū

γ

b

B−

1/x̄ contr.

W−

γ

ū

b
B−

Local contr.

at LP inmb/mW ≪ 1

IB± =

∫ 1

0

dxH±(x, µh)ϕB(x;µh)

ĪB± =

∫ 1

0

dxH±(x̄, µh)ϕB(x;µh)

with H±(x) =
1
x(1 +O(αs))

Br(W → Bγ) =
αemmWf2

B

48v2ΓW
|Vub|2

(
|FB

1 |2 + |FB
2 |2

)
FB
1 = QuI

B
+ +QdĪ

B
+ FB

2 = 2(Qu −Qd)−QuI
B
− +QdĪ

B
−

Our task is to simply use our evolved LCDA for ϕB(x;µh) in the convolutions
We will compare with the model from [GKN15] (with our inputs)
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ū

B−

1/x contr.

W−

ū
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ĪB± =

∫ 1

0

dxH±(x̄, µh)ϕB(x;µh)

with H±(x) =
1
x(1 +O(αs))

Br(W → Bγ) =
αemmWf2

B

48v2ΓW
|Vub|2

(
|FB

1 |2 + |FB
2 |2

)

FB
1 = QuI

B
+ +QdĪ
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ū

γ

b

B−

1/x̄ contr.

W−

γ

ū
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HQET Factorization [Ishaq, Jia, Xiong, Yang 2019]

The process can be studied at fixed‐order in HQET consideringmW ∼ mb

⇒ |FB
1 | = |FB

2 | = QuI
B
± ∼ mb

ΛQCD
≫ ĪB± , Local ∼ 1

|FB
1,2|HQET = Qu

f̃B(µb)

fB

∫ ∞

0

dω T (ω,mb,mW , µb)φ+(ω;µb)

we used our inputs and model for φ+(ω;µb) to have a fair comparison

we checked by re‐expanding the resummed result that

T (ω,mb,mW , µb)
∣∣∣
mb≪mW

=
hard scattering kernel
H±(x,mW , µh) ⊗x

LCDA evolution
fERBL(x, u, µh, µb)⊗u

jet function
Jp(u, ω,mb, µb)
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