Resummation of Sudakov Shoulder Logarithms in Heavy Jet Mass

$$
\rho=\frac{1}{Q^{2}} \max \left\{m_{L}^{2}, m_{H}^{2}\right\}
$$

> Xiaoyuan Zhang Harvard University

Based on:

- [Arindam Bhattacharya, Matthew Schwartz, XYZ, 2205.05702]
- [Arindam Bhattacharya, Johannes Michel, Matthew Schwartz, lain Stewart, XYZ , in progress]

Motivation

- Remaining problem in α_{s} measurement with heavy jet mass:

20 years ago: [Salam, Wicke, hep-ph/0102343]

Secondly fits for the heavy-jet mass (a very non-inclusive variable) lead to values for α_{s} which are about 10% smaller than for inclusive variables like the thrust or the mean jet mass. This needs to be understood. It could be due to a difference in the behaviour of the perturbation series at higher orders. But in appendix D there is evidence from Monte Carlo simulations that hadronisation corrections for ρ_{h} have unusual characteristics: in contrast to what is seen in more inclusive variables, the hadronisation depends strongly on the underlying hard configuration. There is therefore a need to develop techniques allowing a more formal approach to the study of such problems.

10 years ago: [Becher, Schwartz, 0803.0342]
[Chien, Schwartz, 1005.1644]
$\mathrm{N}^{3} \mathrm{LL}$ dijet resummation + power correction: Inconsistence between thrust and heavy jet mass
[Also Vicent Mateu's talk at SCET 2011]

Thrust vs HJM

- Thrust and HJM have different kinks order by order in perturbation theory

HJM left shoulder could have significant effect on the α_{s} measurement

- There are also non-perturbative effects:
- Scheme dependence: E-scheme, p-scheme
[Mateu, Stewart, Thaler, 1209.3781]
- Hadronization corrections
[Salam, Wicke, hep-ph/0102343]
[Nason, Zanderighi, 2301.03607]

- Our first step is to understand the perturbative picture- Sudakov shoulders

Sudakov shoulders

- Sudakov shoulders arise from incomplete cancellations between the virtual corrections and real emissions, where the range of event shape grows order-byorder in perturbation theory. [Catani, Webber, hep-ph/9710333]
- Start with 3-parton configuration, the event shapes are restricted at each order:

| Tree, one-loop virtual: | $C \leq \frac{3}{4}, \quad \tau, \rho \leq \frac{1}{3}$ |
| :---: | :---: | :---: |
| Real emission: | $C \leq 1, \quad \tau, \rho \leq \frac{7-2 \sqrt{6}}{5}$ |

Incomplete cancellation \Rightarrow divergence, kinks, etc. \Rightarrow large logarithms

- Fixed-order calculation gives
- Thrust: only right shoulder

$$
t=\tau-\frac{1}{3} \quad \frac{1}{\sigma_{L O}} \frac{d \sigma}{d \tau}=\frac{\alpha_{s}}{4 \pi} \theta(t)\left\{-6\left(2 C_{F}+C_{A}\right) t \ln ^{2} t+\left[6 C_{F}(1-4 \ln 3)+C_{A}(1-12 \ln 3)+4 n_{f} T_{F}\right] t \ln t\right\}
$$

- HJM: left shoulder (affects the α_{s} fit!) and right shoulder

$$
\begin{aligned}
r=\frac{1}{3}-\rho \quad & \frac{1}{\sigma_{L O}} \frac{d \sigma}{d \rho}=\frac{\alpha_{s}}{4 \pi} \theta(r)\left\{-2\left(2 C_{F}+C_{A}\right) r \ln ^{2} r+\left[2 C_{F}\left(1+4 \ln \frac{4}{3}\right)+C_{A}\left(\frac{1}{3}+4 \ln \frac{4}{3}\right)+\frac{4}{3} n_{f} T_{F}\right] r \ln r\right\} \\
& +\frac{\alpha_{s}}{4 \pi} \theta(-r)\left\{-4\left(2 C_{F}+C_{A}\right)(-r) \ln ^{2}(-r)+\left[4 C_{F}(1-4 \ln 6)+2 C_{A}\left(\frac{1}{3}-4 \ln 6\right)+\frac{8}{3} n_{f} T_{F}\right](-r) \ln (-r)\right\}
\end{aligned}
$$

Outline

- Previous work: [Arindam's talk at SCET 2022]
- Fixed-order calculation near the shoulder
- Factorization theorem
+ Trijet hemisphere soft function
+ Sudakov Landau poles
- Current work:
+ Resummation in Fourier space
- ρ_{L} subtraction scheme
- Shoulder profile and result
- Matched to dijet resummation

Previous work: shoulder factorization

With Arindam Bhattacharya and Matthew Schwartz

- Factorization theorem
+ Trijet hemisphere soft function
+ Sudakov Landau poles

Shoulder factorization theorem

$$
\begin{aligned}
& \frac{d \sigma_{i}}{d x}=\sigma_{L O} H(Q) \int d m_{1}^{2} d m_{2}^{2} d m_{3}^{2} d k_{L} d k_{H} J_{q}\left(m_{1}^{2}\right) J_{q}\left(m_{2}^{2}\right) J_{g}\left(m_{3}^{2}\right) S_{i}^{(x)}\left(k_{L}, k_{H}\right) \times M_{t}^{(x)} \Theta\left(M_{t}^{(x)}\right) \\
& \text { LO Trijet } \\
& \text { phase hard } \\
& \text { space function }
\end{aligned}
$$

- The factorization theorem is derived from SCET_{I} and trijet kinematics
- For HJM, this measurement is valid for both left shoulder $(\rho<1 / 3)$ and right shoulder $(\rho>1 / 3)$
- New ingredient needed: six-directional differential soft function, integrated to the trijet hemisphere soft function

Trijet hemisphere soft function

- Definition of differential soft function
$S_{6 i}\left(q_{i}\right)=2 g_{s}^{2} \mu^{2 \epsilon} \int \frac{d^{d} k}{(2 \pi)^{d-1}} \delta^{+}\left(k^{2}\right) \mathscr{H}\left(k, q_{i}\right) \times\left[C_{23} \frac{n_{2} \cdot n_{3}}{\left(n_{2} \cdot k\right)\left(n_{3} \cdot k\right)}+C_{12} \frac{n_{1} \cdot n_{2}}{\left(n_{1} \cdot k\right)\left(n_{2} \cdot k\right)}+C_{13} \frac{n_{1} \cdot n_{3}}{\left(n_{1} \cdot k\right)\left(n_{3} \cdot k\right)}\right]$
- From thrust axis constraint (trijet kinematics):

$$
m_{1}^{2}+\frac{2 Q}{3}\left(n_{1} \cdot k_{1}+N_{2} \cdot k_{\overline{2}}+N_{3} \cdot k_{\overline{3}}\right)<\frac{1}{3}-\rho+m_{2}^{2}+m_{3}^{2}+\frac{2 Q}{3}\left(n_{2} \cdot k_{2}+n_{3} \cdot k_{3}+\bar{n}_{1} \cdot k_{\overline{1}}\right)
$$

soft projections

$$
\mathscr{H}\left(k, q_{i}\right)=\theta\left(n_{2} \cdot k-\bar{n}_{2} \cdot k\right) \theta\left(n_{3} \cdot k-\bar{n}_{3} \cdot k\right) \delta\left(q_{1}-\frac{2}{3} n_{1} \cdot k\right)+\text { other five terms }
$$

- For HJM, $\quad N_{2}=\left(1,0,+\frac{\sqrt{3}}{2}, \frac{3}{2}\right), \quad N_{3}=\left(1,0,-\frac{\sqrt{3}}{2}, \frac{3}{2}\right)$
- For thrust, $N_{2}=\bar{n}_{2}, N_{3}=\bar{n}_{3}$

Trijet hemisphere soft function

Pentagon functions [Chicherin, Sotnikov, 2209.07803]

- One-loop calculation
- Topology identification (7 master integrals)
- Numerically evaluate them and analytically reconstruct some numbers with PSLQ

Weight	Parity-even	Parity-odd
One	$\ln 2, \ln 3$	$i \pi$
Two	$L i_{2}\left(\frac{2}{3}\right)$	$i \operatorname{Im}\left[L i_{2} e^{\frac{i \pi}{3}}\right]$Gieseking's constant
Three	$L i_{3}\left(\frac{2}{3}\right), L i_{3}\left(\frac{1}{4}\right), \zeta_{3}$	$i \operatorname{Im}\left[L i_{3}\left(\frac{i}{\sqrt{3}}\right)\right], i \operatorname{Im}\left[L i_{3}(1+i \sqrt{3})\right]$

- Integrating the differential soft function:

Non-global logs beyond NNLL
$S_{i}\left(q_{L}, q_{H}, \mu\right)=\int d^{6} q_{i} S_{6 i}\left(q_{i}, \mu\right) \delta\left(q_{L}-q_{1}-q_{\overline{2}}-q_{\overline{3}}\right) \delta\left(q_{H}-q_{\overline{1}}-q_{2}-q_{3}\right)=S_{i L}\left(q_{L}, \mu\right) S_{i H}\left(q_{H}, \mu\right) S_{f}\left(q_{L}-q_{H}\right)$
Similar to dijet resummation, at NNLL we only need $\mathcal{O}\left(\alpha_{s}\right)$ soft constant and we put it in $S_{i L}\left(q_{L}, \mu\right)$ and $S_{i H}\left(q_{H}, \mu\right)$

$$
\begin{aligned}
\frac{d \sigma_{g}}{d \rho} & =\sigma_{L O} H(Q) \int d m_{L}^{2} d m_{H}^{2} \underbrace{\int d m_{1,2}^{2} d k_{H} J_{q}\left(m_{1}^{2}\right) J_{q}\left(m_{2}^{2}\right) S_{i H}^{(\rho)}\left(k_{H}\right) \delta\left(m_{H}^{2}-m_{1}^{2}-m_{2}^{2}-k_{H} Q\right)}_{K_{H}\left(m_{H}^{2}\right)} \\
& \times \underbrace{\int d m_{3}^{2} d k_{L} J_{g}\left(m_{3}^{2}\right) S_{i L}^{(\rho)}\left(k_{L}\right) \delta\left(m_{L}^{2}-m_{3}^{2}-k_{L} Q\right)}_{K_{L}\left(m_{L}^{2}\right)} \times\left(\frac{1}{3}-\rho-m_{L}^{2}+m_{H}^{2}\right) \Theta\left(\frac{1}{3}-\rho-m_{L}^{2}+m_{H}^{2}\right)
\end{aligned}
$$ where $K_{L, H}\left(m^{2}\right)$ RGE can be solved in the Laplace space respectively

Sudakov Landau poles

- Resummation in the momentum space

$$
\begin{aligned}
& \text { Left shoulder: } \quad \frac{1}{\sigma_{L O}} \frac{d \sigma_{i}}{d \rho}=\Pi_{i}\left(\partial_{\eta_{l}}, \partial_{\eta_{h}}\right) r\left(\frac{r Q}{\mu_{s} e^{-\gamma_{E}}}\right)^{\eta_{l}+\eta_{h}} \frac{\sin \left(\pi \eta_{l}\right)}{\pi} \Gamma\left(-1-\eta_{l}-\eta_{h}\right)
\end{aligned}
$$

$$
\begin{aligned}
\eta_{l}^{(g)} & =2 C_{A} A_{\Gamma}\left(\mu_{j}, \mu_{s}\right) \\
\eta_{h}^{(g)} & =4 C_{F} A_{\Gamma}\left(\mu_{j}, \mu_{s}\right)
\end{aligned}
$$

Right shoulder:

$$
s=\rho-\frac{1}{3}>0
$$

$$
\frac{1}{\sigma_{L O}} \frac{d \sigma_{i}}{d \rho}=\Pi_{i}\left(\partial_{\eta_{l}}, \partial_{\eta_{h}}\right) s\left(\frac{s Q}{\mu_{s} e^{-\gamma_{E}}}\right)^{\eta_{l}+\eta_{h}} \frac{\sin \left(\pi \eta_{h}\right)}{\pi} \Gamma\left(-1-\eta_{l}-\eta_{h}\right)
$$

With RG kernel following

$$
\begin{aligned}
\Pi_{g}\left(\partial_{\eta_{l}}, \partial_{\eta_{h}}\right) & =\exp \left[4 C_{F} S\left(\mu_{h}, \mu_{j}\right)+4 C_{F} S\left(\mu_{s}, \mu_{j}\right)+2 C_{A} S\left(\mu_{h}, \mu_{j}\right)+2 C_{A} S\left(\mu_{s}, \mu_{j}\right)\right] \exp \left[2 A_{\gamma_{s g}}\left(\mu_{s}, \mu_{h}\right)+2 A_{\gamma_{s q q}}\left(\mu_{s}, \mu_{h}\right)+2 A_{\gamma_{j g}}\left(\mu_{j}, \mu_{h}\right)+4 A_{\gamma_{j q}}\left(\mu_{j}, \mu_{h}\right)\right] \\
& \times\left(\frac{Q^{2}}{\mu_{h}^{2}}\right)^{-2 A_{\Gamma}\left(\mu_{h} \mu_{j}\right)} H\left(Q, \mu_{h}\right) \tilde{j}_{q}\left(\partial_{\eta_{h}}+\ln \frac{Q \mu_{s}}{\mu_{j}^{2}}\right) \tilde{j}_{\bar{q}}\left(\partial_{\eta_{h}}+\ln \frac{Q \mu_{s}}{\mu_{j}^{2}}\right) \tilde{j}_{g}\left(\partial_{\eta_{l}}+\ln \frac{Q \mu_{s}}{\mu_{j}^{2}}\right) \tilde{s}_{g L}\left(\partial_{\eta_{l}}\right) \tilde{s}_{g H}\left(\partial_{\eta_{h}}\right)
\end{aligned}
$$

- The Γ function has an infinite number of poles in the r space (referred as Sudakov Landau pole):

$$
-1-\eta_{l}-\eta_{h}=\underbrace{0,-1}_{\rho<0}, \underbrace{-2,-3, \cdots}_{0<\rho<\frac{1}{3}}
$$

- which is similar to the q_{T} resummation of Drell-Yan or Higgs production in the momentum space
[Catani et al., 9604351], [Frixione, Nason, Ridolfi, 9809367],
[Becher, Neubert, 1007.4005], [Monni, Re, Torrielli, 1604.02191], etc.

Current work: NNLL resummation

With Arindam Bhattacharya, Johannes Michel, Matthew Schwartz and lain Stewart

+ Resummation in Fourier space
+ ρ_{L} subtraction scheme
+ Shoulder profile and result
- Matched to dijet resummation

Sudakov Landau poles

- There are non-log terms when expanding our resummation formula
$\frac{1}{\sigma_{\mathrm{LO}}} \frac{d \sigma^{\text {resum }}}{d \rho} \supset \alpha_{s}\left[\theta(r)\left(r \ln ^{2} r+r \ln r+r+c_{1}\right)+\theta(-r)\left(-r \ln ^{2}(-r)-r \ln (-r)-r+c_{2}\right)\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)$
One way to remove these linear terms is to take the second derivative $\sigma_{i}(r) \equiv \frac{1}{\sigma_{L O}} \frac{d^{3} \sigma}{d \rho^{3}}$
Pros: - $\sigma_{i}(r)$ shares the same form as dijet logarithms $\left(\frac{\ln ^{n} r}{r}\right)_{+}$
- Our eyes are not blinded by the phase space factor

Cons:

- This only removes the first two poles

$$
-1-\eta_{l}-\eta_{h}=0,-1 \rightarrow \rho<0
$$

- Our shoulder HJM measurement $\quad \theta\left(M_{t}^{(\rho)}\right)=\theta\left(r-m_{L}^{2}+m_{H}^{2}\right), \quad r \sim \lambda^{2}$

Possible hierarchies between hemisphere masses: where EFT is valid
irrelevant regions

$$
\left[\begin{array}{c:c:c}
m_{L}^{2} \sim \lambda^{2}, m_{H}^{2} \sim \lambda^{2} ; r \sim \lambda^{2} & m_{L}^{2} \sim 1, m_{H}^{2} \sim \lambda^{2} ; r \sim 1 & \\
\hdashline m_{L}^{2} \sim 1, m_{H}^{2} \sim 1 ; r \sim \lambda^{2} & m_{L}^{2} \sim \lambda^{2}, m_{H}^{2} \sim 1 ; r \sim 1 & m_{L}^{2} \sim 1, m_{H}^{2} \sim 1 ; r \sim 1
\end{array}\right.
$$

our factorization includes
Our resummation contains non-EFT contributions

Sudakov Landau poles

- Another observation: from recoil sensitivity, each ρ receives contribution from both left shoulder and right shoulder

Laplace \neq Fourier:

Traditional resummation for event shapes (like thrust) in the Laplace space doesn't work for shoulder logarithms

Fourier space is the only space that diagonalizes the δ function and allows us to resum both shoulders together

- Recall r convolution for second derivative:

$$
\begin{aligned}
\sigma_{i}(r) \propto f_{i}(r) & =\frac{1}{\Gamma\left(\eta_{l}\right) \Gamma\left(\eta_{h}\right)} \int_{0}^{\infty} d m_{L}^{2} \int_{0}^{\infty} d m_{H}^{2}\left(m_{L}^{2}\right)^{\eta_{l}-1}\left(m_{H}^{2}\right)^{\eta_{h}-1} \delta\left(r-m_{L}^{2}+m_{H}^{2}\right) \\
& =|r|^{\eta_{l}+\eta_{h}-1} \Gamma\left(1-\eta_{l}-\eta_{h}\right)\left[\theta(r) \frac{\sin \left(\eta_{l} \pi\right)}{\pi}+\theta(-r) \frac{\sin \left(\eta_{h} \pi\right)}{\pi}\right]
\end{aligned}
$$

Fourier transformation

$$
\tilde{f}_{i}(y)=\int_{-\infty}^{+\infty} d r e^{i y r} f_{i}(r)=\left(-i y_{+}\right)^{-\eta_{l}}\left(+i y_{-}\right)^{-\eta_{h}} \quad y_{ \pm}=y \pm i \epsilon
$$

Alternatively, if we do the r integral first:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} d r e^{i y r} \int_{0}^{\infty} d m_{L}^{2} \int_{0}^{\infty} d m_{H}^{2}\left(m_{L}^{2}\right)^{\eta_{l}-1}\left(m_{H}^{2}\right)^{\eta_{h}-1} \delta\left(r-m_{L}^{2}+m_{H}^{2}\right) \\
&=\underbrace{\int_{0}^{\infty} d m_{L}^{2}\left(m_{L}^{2}\right)^{\eta_{l}-1} e^{i m_{L}^{2} y}}_{\mathfrak{T}(y)>0} \underbrace{\int_{0}^{\infty} d m_{H}^{2}\left(m_{H}^{2}\right)^{\eta_{h}-1} e^{-i m_{H}^{2} y}}_{\mathfrak{J}(y)<0}
\end{aligned}
$$

$$
e^{-\epsilon\left(m_{L}^{2}+m_{H}^{2}\right)} \text { also }
$$

suppresses the large mass region

Fourier space scale-setting

- Resummed second derivative

$$
\tilde{\sigma}_{i}(y)=\int_{-\infty}^{+\infty} d r e^{i y r} \sigma_{i}(r)=\Pi_{i}\left(\partial_{\eta_{l}}, \partial_{\eta_{h}}\right) \times\left(-\frac{i y e^{\gamma_{E}} \mu_{s}}{Q}\right)^{-\eta_{l}}\left(+\frac{i y e^{\gamma_{E}} \mu_{s}}{Q}\right)^{-\eta_{h}}
$$

- The canonical scale in the Fourier space is $\quad \mu_{h}=Q, \quad \mu_{j}=\frac{Q}{\sqrt{|y|}}, \quad \mu_{s}=\frac{Q}{|y|}$
- To obtain the spectrum, we need to inverse Fourier transform $\tilde{\sigma}_{i}(y)$ and integrate over ρ (or r) twice

$$
\begin{aligned}
\frac{1}{\sigma_{L O}} \frac{d^{3} \sigma}{d \rho^{3}}=\int_{-\infty}^{+\infty} \frac{d y}{2 \pi} e^{-i y r^{\prime \prime}} \tilde{\sigma}_{i}(y) & =2 \Re\left[\int_{0}^{\infty} \frac{d y}{2 \pi} e^{-i y r^{\prime \prime}} \tilde{\sigma}_{i}(y)\right], \quad \tilde{\sigma}_{i}^{\star}(-y)=\tilde{\sigma}_{i}(y) \\
\frac{1}{\sigma_{L O}} \frac{d \sigma}{d \rho}=\int_{r_{L}}^{r} d r^{\prime} \int_{r_{L}}^{r^{\prime}} d r^{\prime \prime} \frac{1}{\sigma_{L O}} \frac{d^{3} \sigma}{d \rho^{3}} & =2 \Re\left[\int_{0}^{\infty} \frac{d y}{2 \pi}\left(\frac{e^{-i r_{L} y}-e^{-i r y}}{y^{2}}+i \frac{e^{-i r_{L} y}\left(r_{L}-r\right)}{y}\right) \tilde{\sigma}_{i}(y)\right] \\
& \equiv 2 \Re\left[\int_{0}^{\infty} \frac{d y}{2 \pi} K\left(y, r, r_{L}\right) \tilde{\sigma}_{i}(y)\right] \quad \text { Kernel function }
\end{aligned}
$$

- The integration boundary $r_{L}=\frac{1}{3}-\rho_{L}$. This introduces a residual linear function.

Fixed-order matching

- Resummation matched to fixed-order: $\mu_{h, j, s}^{\mathrm{FO}}=Q$

$$
\begin{aligned}
\frac{d \sigma^{\mathrm{match}}}{d \rho} & =\frac{d \sigma^{\mathrm{FO}}}{d \rho}+\sigma_{\mathrm{LO}} \int_{r_{L}}^{r} d r^{\prime} \int_{r_{L}}^{r^{\prime}} d r^{\prime \prime}\left[\sigma^{\mathrm{resum}}\left(r^{\prime \prime}, \mu^{\mathrm{res}}\right)-\sigma^{\mathrm{resum}}\left(r^{\prime \prime}, \mu^{\mathrm{FO}}\right)\right] \\
& =\frac{d \sigma^{\mathrm{FO}}}{d \rho}+\sigma_{\mathrm{LO}} 2 \Re\left\{\int_{0}^{\infty} \frac{d y}{2 \pi} K\left(y, r, r_{L}\right)\left[\tilde{\sigma}_{i}\left(y, \mu^{\mathrm{res}}\right)-\tilde{\sigma}_{i}\left(y, \mu^{\mathrm{FO}}\right)\right]\right\}
\end{aligned}
$$

- But there is still residual ρ_{L} (or r_{L}) dependence
- In fact, picking a different boundary r_{L}^{\prime} leads to an extra linear function $a_{1}\left(\alpha_{s}, r_{L}, r_{L}^{\prime}\right) r+a_{2}\left(\alpha_{s}, r_{L}, r_{L}^{\prime}\right)$ that starts at one order higher than fixed-order matching
- Question: can we subtract ρ_{L}-dependent terms to all orders in α_{s} ?
- Our resummation gives rise to

$$
\theta(r)\left[r \sum_{n \geq 0, m \geq 1} c_{n, m} \alpha_{s}^{n} \ln ^{m} r+r l_{1}\left(\alpha_{s}, r_{L}\right)\right]+\theta(-r)\left[(-r) \sum_{n \geq 0, m \geq 1} d_{n, m} \alpha_{s}^{n} \ln ^{m}(-r)+r l_{2}\left(\alpha_{s}, r_{L}\right)\right]+c\left(\alpha_{s}, r_{L}\right)
$$

However, EFT only predicts $l_{1}\left(\alpha_{S}, r_{L}\right)-l_{2}\left(\alpha_{S}, r_{L}\right)$ so we need to subtract the artificial piece

ρ_{L} subtraction scheme

$$
f\left(r, r_{L}\right)=\theta(r)\left[r \sum_{n \geq 0, m \geq 0} c_{n, m} \alpha_{s}^{n} \ln ^{m} r\right]+\theta(-r)\left[(-r) \sum_{n \geq 0, m \geq 0} d_{n, m} \alpha_{s}^{n} \ln \ln ^{m}(-r)\right]+\underset{\text { linear background }}{r l\left(\alpha_{s}, r_{L}\right)+c\left(\alpha_{s}, r_{L}\right)}
$$

- There are three special values that have access to all orders result

$$
\left\{\begin{array}{l}
f\left(1, r_{L}\right)=\sum_{n \geq 0} c_{n, 0} \alpha_{s}^{n}+l\left(\alpha_{s}, r_{L}\right)+c\left(\alpha_{s}, r_{L}\right) \\
f\left(-1, r_{L}\right)=\sum_{n \geq 0} d_{n, 0} \alpha_{s}^{n}-l\left(\alpha_{s}, r_{L}\right)+c\left(\alpha_{s}, r_{L}\right) \\
f\left(0, r_{L}\right)=c\left(\alpha_{s}, r_{L}\right)
\end{array}\right.
$$

- There are various ways to control the slope in each shoulder.
- The simplest one is to introduce a uniform parameter ξ (referred as ξ-scheme)

$$
\xi \equiv \frac{\sum_{n \geq 0} c_{n, 0} \alpha_{s}^{n}}{\sum_{n \geq 0}\left(c_{n, 0}+d_{n, 0}\right) \alpha_{s}^{n}}, \quad 0 \leq \xi \leq 1 \quad \text { LO singular suggests } \xi=1
$$

- It turns out that doing the subtraction is equivalent to modifying the kernel

$$
\tilde{K}(r, \xi)=\frac{1}{2 \pi y^{2}}\left[1-e^{-i y r}+(1-\xi) r e^{-i y}-\xi r e^{i y}+r(2 \xi-1)\right]
$$

- Eventually, ξ becomes an additional source of uncertainty.

NNLL result with canonical scale

- Frozen soft scale: $\mu_{s}=\sqrt{\left(\mu_{s}^{\min }\right)^{2}+Q^{2} / y^{2}}, \quad \mu_{s}^{\min }=2 \mathrm{GeV}$
- Central value: the kink is smoothed by resummation
- Band variation: μ_{h}, μ_{j}, correlated μ_{s} and ξ

Non-overlapping comes from fixed-order discrepancy

Shoulder profile scale

- We choose the q_{T} profile function: [Lustermans, Michel, Tackmann, Waalewijn, 1901.03331]

$$
\mu_{j / s}^{\mathrm{res}}=\left[\mu_{j / s}^{\mathrm{can}}(y)\right]^{g_{\mathrm{run}}(r)}\left[\mu_{j / s}^{\mathrm{FO}}\right]^{1-g_{\mathrm{run}}(r)}= \begin{cases}\mu_{j / s}^{\mathrm{can}}(y) & \text { if }|r|<r_{1}^{(L, R)} \\ \mu_{j / s}^{\mathrm{FO}}=Q & \text { if }|r|>r_{3}^{(L, R)} \\ \text { smooth function } & \text { else }\end{cases}
$$

$$
r_{i}^{(L, R)}=\frac{1}{3}-\rho_{i}^{(L, R)}
$$

The left profile is determined by

$$
\rho_{3}^{(L)}: \frac{d \sigma_{\mathrm{S}}^{\mathrm{NNLL}}}{d \rho}=\frac{1}{2} \frac{d \sigma_{\mathrm{NS}}^{\mathrm{NNLL}}}{d \rho}, \quad \rho_{1}^{(L)}: \frac{d \sigma_{\mathrm{S}}^{\mathrm{NNLL}}}{d \rho}=2 \frac{d \sigma_{\mathrm{NS}}^{\mathrm{NNLL}}}{d \rho}
$$

The uncertainty is the envelope of μ_{h}, μ_{j}, correlated μ_{s} and ξ variations

Review: dijet resummation

[Becher, Schwartz, 0803.0342], [Chien, Schwartz, 1005.1644]
[Kelley, Schabinger, Schwartz, Zhu, 1105.3676]

- The $\mathrm{N}^{3} \mathrm{LL}$ resummation

$$
\begin{array}{rl}
& \frac{1}{\sigma_{0}} R_{2}^{(\rho)}(\rho)= \\
\sigma_{0} & 1 \\
0 & d \rho^{\prime} \frac{d \sigma_{2}}{d \rho^{\prime}}=\exp \left[4 C_{F} S\left(\mu_{h}, \mu_{j}\right)+4 C_{F} S\left(\mu_{s}, \mu_{j}\right)-2 A_{H}\left(\mu_{h}, \mu_{s}\right)+4 A_{J}\left(\mu_{j}, \mu_{s}\right)\right]\left(\frac{Q^{2}}{\mu_{h}^{2}}\right)^{-2 A_{\Gamma}\left(\mu_{h} \mu_{j}\right)} \\
\times & H\left(Q^{2}, \mu_{h}^{2}\right) j_{q}\left(\partial_{\eta_{h}}+\ln \frac{Q \mu_{s}}{\mu_{j}^{2}}\right) \tilde{j}_{q}\left(\partial_{\eta_{l}}+\ln \frac{Q \mu_{s}}{\mu_{j}^{2}}\right) \tilde{s}_{\mu}\left(\partial_{\eta_{1}} \tilde{s}_{\mu}\left(\partial_{\eta_{2}}\right) \tilde{s}_{f}\left(\partial_{\eta_{1}}-\partial_{\eta_{2}}\right)\left(\frac{\rho Q}{\mu_{s}}\right)^{\eta_{1}+\eta_{2}} \frac{e^{-\gamma_{E} \eta_{1}}}{\Gamma\left(\eta_{1}+1\right)} \frac{e^{-\gamma_{E} \eta_{2}}}{\Gamma\left(\eta_{2}+1\right)}\right.
\end{array}
$$

Four-loop cusp: [Henn, Korchemsky, Mistlberger, 1911.10174]
[Manteuffel, Panzer, Schabinger, 2002.04617]

Resummation order:

Order	resum.	$\Gamma_{\text {cusp }}$	γ_{n}	c_{n}	matching
$1^{\text {st }}$ order	NLL	2-loop	1-loop	tree	-
$2^{\text {nd }}$ order	NNLL	3-loop	2-loop	1-loop	LO
$3^{\text {rd }}$ order	$\mathrm{N}^{3} \mathrm{LL}$	4-loop	3-loop	2-loop	NLO
$4^{\text {th }}$ order	$\mathrm{N}^{3} \mathrm{LL}$	4-loop	3-loop	3-loop	NNLO

[A. Heister et al. [ALEPH Collaboration], 2004]

N3LL dijet + NNLL shoulder

- Joint resummation of dijet and shoulder logarithms:

$$
\frac{d \sigma^{\mathrm{match}}}{d \rho}=\frac{d \sigma^{\mathrm{FO}}}{d \rho}+\left(\frac{d \sigma_{\mathrm{sh}}^{\mathrm{res}}}{d \rho}-\frac{d \sigma_{\mathrm{sh}}^{\mathrm{S}}}{d \rho}\right)+\left(\frac{d \sigma_{\mathrm{dj}}^{\mathrm{res}}}{d \rho}-\frac{d \sigma_{\mathrm{dj}}^{\mathrm{S}}}{d \rho}\right)
$$

- Preliminarily, we will use thrust profile for dijet resummation and canonical $/ q_{T}$ profile for shoulder resummation. [Abbate, Fickinger, Hoang, Mateu, Stewart, 1006.3080]

- Shoulder resummation provides significant corrections:
- Discrepancy between theory and data: We will need to account for power corrections
Xiaoyuan Zhang

Conclusion

- We present the NNLL resummation of Sudakov shoulder logarithms in heavy jet mass.
+ Differentiating twice and scale setting in the Fourier space removes all spurious poles in the momentum space.
* ρ_{L} subtraction scheme gives us control on the ambiguous slope in both shoulders
- We also provide the joint resummation of both dijet and shoulder logs, which is an essential part in the α_{s} measurement.
- Future works:
+ The complete uncertainty estimation
+ Renormalon and power corrections in the trijet limit
- Extract the value of α_{s} from heavy jet mass data

Thank you for your attention!

Backup: Thrust vs HJM (NP)

- NNLO HJM seems to have different shape from data
[Ridder, Gehrmann, Glover, Heinrich, 0711.4711]

- Scheme dependence:
- p-scheme: in terms of 3-momenta
- E-scheme: in terms of energy and angles [Salam, Wicke, hep-ph/0102343]
[Mateu, Stewart, Thaler, 1209.3781]

Backup: Thrust vs HJM (NP)

- Hadronization effects
[Salam, Wicke, hep-ph/0102343]

[Nason, Zanderighi, 2301.03607]
$\zeta(v)=-\left(\frac{d \sigma_{\mathrm{B}}}{d v}\right)^{-1} \frac{\left(\Sigma_{\mathrm{B}+\mathrm{NP}}(v)-\Sigma_{\mathrm{B}}(v)\right)}{H_{\mathrm{NP}}}$

- Something fishy about the power corrections for HJM that we need to understand

Backup: fixed-order matching

- We first introduce the matched second derivative

$$
\sigma^{\mathrm{match}}\left(r, \mu^{\mathrm{res}}\right)=\sigma^{\mathrm{resum}}\left(r, \mu^{\mathrm{res}}\right)+\sigma^{\mathrm{FO}}(r)-\sigma^{\mathrm{FO}, \mathrm{~S}}(r)
$$

- Then require the integrated spectrum agrees with fixed order at two points $\rho_{L, R}$

$$
\begin{array}{r}
\frac{d \sigma^{\mathrm{match}}}{d \rho}=\left\{\begin{array}{l}
\frac{d \sigma^{\mathrm{FO}}}{d \rho} \\
\left.\frac{d \sigma^{\mathrm{FO}}}{d \rho}\right|_{\rho=\rho_{L}}+C_{\rho}\left(\rho-\rho_{L}\right)+\sigma_{\mathrm{LO}} \int_{r_{L}}^{r} d r^{\prime} \int_{r_{L}}^{r^{\prime}} d r^{\prime \prime} \sigma^{\mathrm{match}}\left(r^{\prime \prime}, \mu^{r e s}\right)
\end{array}\right. \\
\text { The boundary }\left.\frac{d \sigma^{\mathrm{match}}}{d \rho}\right|_{\rho=\rho_{R}}=\left.\frac{d \sigma^{\mathrm{FO}}}{d \rho}\right|_{\rho=\rho_{R}} \text { amounts to fix } C_{\rho}
\end{array}
$$

- This is simplified to

$$
\begin{aligned}
\frac{d \sigma^{\mathrm{match}}}{d \rho} & =\frac{d \sigma^{\mathrm{FO}}}{d \rho}+\sigma_{\mathrm{LO}} \int_{r_{L}}^{r} d r^{\prime} \int_{r_{L}}^{r^{\prime}} d r^{\prime \prime}\left[\sigma^{\mathrm{resum}}\left(r^{\prime \prime}, \mu^{\mathrm{res}}\right)-\sigma^{\mathrm{resum}}\left(r^{\prime \prime}, \mu^{\mathrm{FO}}\right)\right] \\
& =\frac{d \sigma^{\mathrm{FO}}}{d \rho}+\sigma_{\mathrm{LO}} 2 \Re\left\{\int_{0}^{\infty} \frac{d y}{2 \pi} K\left(y, r, r_{L}\right)\left[\tilde{\sigma}_{i}\left(y, \mu^{\mathrm{res}}\right)-\tilde{\sigma}_{i}\left(y, \mu^{\mathrm{FO}}\right)\right]\right\}
\end{aligned}
$$

Backup: dijet profile

[Abbate, Fickinger, Hoang, Mateu, Stewart, 1006.3080]

- We adopt the N^{3} LL thrust profile for dijet resummation and rescale the endpoint

$$
\left.\begin{array}{c}
\mu_{h}=e_{h} Q \quad \mu_{j}(\rho)=\left[1+e_{j}\left(\frac{1}{2}-\rho_{1}\right)^{2}\right] \sqrt{\mu_{h} \mu_{s}(\rho)} \\
\mu_{s}(\rho)=\left\{\begin{array}{ll}
\mu_{0}+\frac{b}{2 t_{1}} \rho_{1}^{2}, & 0 \leq \rho_{1} \leq t_{1} \\
b \rho_{1}+d, & \text { peak } \\
\mu_{h}-\frac{b}{1-2 t_{2}}\left(\frac{1}{2}-\rho_{1}\right)^{2}, \quad t_{2} \leq \rho_{1} \leq \frac{1}{2} & \text { far-tail }
\end{array} \quad \rho_{1}=\frac{3}{2} \rho\right.
\end{array}\right] \begin{aligned}
& b=\frac{2\left(\mu_{h}-\mu_{0}\right)}{t_{2}-t_{1}+\frac{1}{2}}, d=\frac{\mu_{0}\left(t_{2}+\frac{1}{2}\right)-\mu_{h} t_{1}}{t_{2}-t_{1}+\frac{1}{2}} \\
& \mu_{0}=2 \pm 0.5 \mathrm{GeV}, \quad n_{1}=t_{1} \frac{Q}{1 \mathrm{GeV}}=5 \pm 3, \quad t_{2}=0.25 \pm 0.05, \quad e_{h}=2^{0 \pm 1}, \quad e_{j}=0 \pm 1
\end{aligned}
$$

