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Motivation
• Remaining problem in  measurement with heavy jet mass:αs
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Figure 9: 1-σ confidence-level contours from fits to event-shape variables in a range of
schemes. (a) fits in the default schemes (normal hadron level); (b) fits in the E-scheme
(normal hadron level), with arrows indicating the motion of the contour in going from the
default to the E-scheme; (c) fits in the E-scheme at resonance level, with arrows indicating
the motion of the contour from the decay-scheme, to the hadron-level E-scheme, to the res-
onance E-scheme — here the correction to resonance level has carried out using only events
with light primary quarks; (d) fits in the E-scheme at resonance level where the correction to
resonance level now includes events with heavy primary quarks as well — the arrows indicate
the motion from the ‘uds’ resonance level.

31

Event Shape ↵s(mZ) ↵0(2GeV) �
2
/d.o.f

1� T 0.1156± 0.0009 0.5020± 0.0102 54.9/(56� 2)

C 0.1110± 0.0006 0.5018± 0.0081 56.0/(69� 2)

⇢H 0.0839± 0.0006 0.8424± 0.0203 137.7/(61� 2)

BW 0.1010± 0.0018 0.7138± 0.0197 52.1/(61� 2)

BT 0.1120± 0.0009 0.6624± 0.0087 77.4/(72� 2)

TM 0.1031± 0.0011 0.5973± 0.0157 45.6/(51� 2)

Table 4: Results for the simultaneous fits for ↵s and ↵0 to experimental data for the distributions
of event shape observables.
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Figure 10: 95% confidence level contours for the fitted values of ↵s and ↵0 to experimental data
for the distributions of event shape observables.

As for the 95% confidence level contours for the mean values, the 95% confidence level contours
for the distributions of each of the observables in Fig. 10 show a strong negative correlation between
the fitted values of ↵s and ↵0. However, we notice that the 95% confidence level contours for the
distributions lie noticeably further apart from one another than was the case for the mean values
in Fig. 8.

In Fig. 11 we observe that TM exhibits the same squeeze requirement as for ⇢H and BW . It is
clear therefore that an extension of our calculation to the three-jet region is particularly needed for
these observables. Nevertheless, we have still performed the simultaneous fits with these observables.
We find that this squeeze requirement leads to noticeably smaller fitted values of ↵s for ⇢H , BW and
TM than for T , C and BT . In particular, for TM we observe a fitted value of ↵s that is comparable
with that for BW and a fitted value of ↵0 located between that of BT and the grouping of C and
1� T . For ⇢H , this effect is even more pronounced with a 95% confidence level contour located far
away from that for BW and TM . As for h⇢Hi, this may also be due to the effect of hadron masses,
as discussed in [66], which we neglect in this preliminary study.
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[Banfi, El-Menoufi, Wood, 2303.01534]

Secondly fits for the heavy-jet mass (a very non-inclusive variable) lead to values for αs

which are about 10% smaller than for inclusive variables like the thrust or the mean jet
mass. This needs to be understood. It could be due to a difference in the behaviour of the
perturbation series at higher orders. But in appendix D there is evidence from Monte Carlo
simulations that hadronisation corrections for ρh have unusual characteristics: in contrast to
what is seen in more inclusive variables, the hadronisation depends strongly on the underlying
hard configuration. There is therefore a need to develop techniques allowing a more formal
approach to the study of such problems.

Acknowledgements

We would like to thank Hasko Stenzel and Bryan Webber for discussions about differences
between the jet masses and the thrust which where the original motivation for this work.
We are also grateful to them and additionally to Mrinal Dasgupta, Yuri Dokshitzer, Klaus
Hamacher, Einan Gardi, Pino Marchesini, Klaus Rabbertz, Torbjörn Sjöstrand and Giulia
Zanderighi for valuable discussions and suggestions throughout the course this work. One
of us (GPS) would further like to thank the Milano section of the INFN and Milano and
Milano-Bicocca universities for the use of computing facilities and hospitality while part of
this work was carried out.

A Summary of notation

For convenience we give here a summary of the definition of the various schemes introduced
in this article.

p-scheme Scheme in which the observable is defined solely in terms of particle
3-momenta.

E-scheme Scheme in which the observable is defined solely in terms of particle
energies and angles.

decay-scheme Scheme in which all massive particles are decayed isotropically into
pairs of massless particles. The observable is then calculated using
the resulting ensemble of massless particles.

We also summarise some of the other notation used and introduced in this article.

V An event-shape variable.

Vp,VE,Vdecay An event-shape variable in p, E or decay-scheme, respectively.

cV The coefficient of the ‘traditional’ power correction for the observable
V, introduced in eq. (3.5) and given for a range of observables in
table 1.

〈δmV〉 The non-universal mass-dependent correction to the mean value of
the observable V, cf. eq. (3.10).

δcV(m2/k2
t ) The modification to cV for a particle with a given m2/k2

t , cf. eq. (3.12).
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Figure 10: Contours of 2σ and 5σ confidence in the simultaneous fit of αs and a non-
perturbative shift parameter ΛNP to the thrust and heavy jet mass aleph data from 91.2
to 206 GeV. The combined fit is also shown.

Event Shape αs(mZ) ΛNP (GeV) χ2/d.o.f.

Thrust 0.1101 0.821 66.9/47

Heavy Jet Mass 0.1017 3.17 60.4/43

Combined 0.1236 -0.621 453/92

Table 3: Best fit values including leading power correction. The χ2 is calculated using both
statistical and experimental systematic uncertainties.

shapes would remove the ambiguity, but this does not happen. Second, we see that while the
perturbative fit has αs lower for thrust than for heavy jet mass, with the power corrections,
the value of αs is higher for thrust, as found in previous studies [17, 18]. However, when we
perform a simultaneous fit to all of the thrust and heavy jet mass degrees of freedom, we get a
value for αs that is larger than each one separately. The best fit for thrust, heavy jet mass, and
the combined fit are shown in Table 3. The fact that the thrust and heavy jet mass contours
do not overlap indicate that a better handling of non-perturbative effects is required.

We conclude that neither correcting the theory curves with a Monte Carlo simulation nor
using a minimal shape function approach for the leading power correction is satisfactory. The
shape function approach is improvable, while the Monte Carlo approach is limited by the
perturbative accuracy of the parton shower, which will be limited to leading-log resummation
in at least the near future (although SCET may eventually help go beyond LL [34, 35]). To
improve the shape function fit, a number of additional ingredients should be included. First
of all, the renormalon ambiguity in separating the perturbative and non-perturbative parts of
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 dijet resummation + power correction:


Inconsistence between thrust and heavy jet mass
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N3LL

Today:

A new method to compute the leading non-perturbative 
corrections in dijet region:


Result from HJM is still off

2Xiaoyuan Zhang
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Thrust vs HJM
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Figure 11: The hadronisation correction as a function of the value of the variable at parton
level.

In [37] it has been pointed out that for the longitudinal fragmentation functions there
can also be corrections proportional to mb/Q associated with the decay of secondary heavy-
quarks produced from a soft gluon, though it is suggested that for today’s energies such a
behaviour may not yet have set in. The possibility of a similar contribution in event shapes
should be investigated.

D The heavy-jet mass

We observed in section 6 that even in a ‘proper’ scheme the (αs,α0) fits for the heavy-jet
mass (and perhaps also the wide-jet broadening) seem to some extent inconsistent with the
results for the other variables. The distinguishing feature of the heavy-jet mass is its non-
inclusiveness, since it measures a specific hemisphere of the event (the heavy one), whereas
other variables measure the properties of the whole event.

We may well ask why non-inclusiveness leads to differences. One interesting analysis
has been presented in [18], which suggests that hadronisation corrections can be different in
the two hemispheres and convert a perturbatively light jet into a heavy one. However this
effectively increases the power correction rather than decreasing it and so cannot explain
the relatively small αs and α0 values that are observed. This does not mean that such a
mechanism is not present at all — indeed in the difference between the E and p schemes the
heavy jet mass correction is larger than that for the single jet mass (cf. fig. 6), and this could
be due to such a mechanism (it could also simply be because there are more hadrons in the
heavy hemisphere).

To help understand what is happening we have used Pythia to look at the mean hadro-
nisation as a function of the value of the variable at parton level, figure 11. For the thrust,
the hadronisation is fairly independent of the parton-level thrust value. For the heavy jet
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• Thrust and HJM have different kinks order by order in perturbation theory
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3
. The NLO computation is performed with the program event2 [9, 10]. All

distributions are normalized to Born cross section �0.

shoulder region, the phase space and matrix elements both neatly factorize. This allows

us to define a soft function, which along with the inclusive jet function, can be used to

reproduce all the logarithms at NLO, and more generally the next-to-leading logarithmic

series. In Section IV we analyze the resummed expression. We show that there are no non-

global logarithms for the Sudakov shoulder; only regions related to the trijet configuration

by soft or collinear radiation can generate the shoulder logs. We also find an unusual pole

in the the resummed distribution, qualitatively similar to the Landau pole in the running

coupling. Unlike the QCD Landau pole however, the singularity in the resummed heavy

jet mass shoulder distribution is determined by the cusp anomalous dimension. Thus it is

a kind of Sudakov Landau pole. Similar poles can be found in other observables, such as

the Drell-Yan spectrum at small pT [11–13]. We show that for the Sudakov shoulder case,

the large Sudakov anomalous dimension contributing to this pole also enhances subleading

power e↵ects, making them comparable to the leading power result allowing the pole to be

cancelled in the full distribution. We conclude in Section VI.

II. NEXT-TO-LEADING ORDER ANALYSIS

As a first step towards understanding Sudakov shoulder logarithms, we analyze the matrix

elements and phase space near the shoulder region in full QCD. We concentrate here on the
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• Our first step is to understand the perturbative picture— Sudakov shoulders

• There are also non-perturbative effects:

• Scheme dependence: E-scheme, p-scheme


• Hadronization corrections
[Salam, Wicke, hep-ph/0102343]

[Nason, Zanderighi, 2301.03607]

[Mateu, Stewart, Thaler, 1209.3781]

HJM left shoulder could have significant effect on the  measurementαs

Xiaoyuan Zhang



Sudakov shoulders
• Sudakov shoulders arise from incomplete cancellations between the virtual 

corrections and real emissions, where the range of event shape grows order-by-
order in perturbation theory.


• Start with 3-parton configuration, the event shapes are restricted at each order:
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in Fig 1. Near this point the spin-summed 3-body matrix-element-squared is not exceptional
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3
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with the factor of 3 coming from the 3 choices of thrust axis all of which contribute equally

near ⌧ = 1

3
. Already here we can see the Sudakov shoulder: there is a discontinuity in the

first derivative of the distribution from �144CF
↵s

4⇡
for ⌧ <

1

3
to 0 for ⌧ >

1

3
.

Given the thrust axis from the maximization in Eq. (1), the event is divided into two

hemispheres. We can compute the invariant masses m1 and m2 of all the partons in hemi-

sphere 1 and 2 and then heavy jet mass is defined as

⇢ =
1

Q2
max(m2

1
,m

2

2
) (5)

At order ↵s one hemisphere must be massless and ⌧ = ⇢, and thus d�

d⇢
has a discontinuity in

its first derivative at leading order, just like ⌧ .

Now, consider what happens at higher order in perturbation theory. The parton in the

light hemisphere will radiate gluons, making the light hemisphere massive. Since the cross

section for the light jet having mass less than m after one emission scales like � ⇠ ↵s ln2
m

2

there is a Sudakov enhancement to the cross section at small m2. As the light hemisphere jet

grows, energy must be drawn away from the heavy hemisphere, making it lighter. Roughly

speaking, setting Q = 1 for simplicity, ⇢ . 1

3
�m

2 (as we will derive). As a consequence, the

cross section at ⇢ = 1

3
� m

2 will be enhanced by factors of ln2
m

2 = ln2(1

3
� ⇢). Thus large
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Tree, one-loop virtual:

Real emission:

Incomplete cancellation  divergence, kinks, etc.   large logarithms⇒ ⇒
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• HJM: left shoulder (affects the  fit!) and right shoulderαs
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− ρ

• Fixed-order calculation gives

• Thrust: only right shoulder
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Outline
• Previous work:


✦ Fixed-order calculation near the shoulder

✦ Factorization theorem

✦ Trijet hemisphere soft function

✦ Sudakov Landau poles


• Current work:

✦ Resummation in Fourier space

✦  subtraction scheme

✦ Shoulder profile and result

✦ Matched to dijet resummation
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FIG. 4: Soft radiation from the trijet configuration can be categorized as entering one of 6 sextant

wedges shaped like carpels of an orange. The boundary of each sextant is determined by two planes

orthogonal to the jet directions n1, n2 and n3. For example, radiation in the sextant labeled k1̄

(backwards to the 1-jet) is characterized by n̄2 · k > n2 · k and n̄3 · k > n3 · k.
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Figure 6: Convergence of resummed and fixed-order distributions. aleph data (red) at 91.2
GeV is included for reference. All plots have αs(mZ) = 0.1214.

by factors of 2. Figure 6 shows the effect of the envelope of these variations on the heavy jet
mass distribution, for four orders in perturbation theory. We use the same definitions for the
various orders as in [11]:

Order resum. Γcusp γn cn matching

1st order NLL 2-loop 1-loop tree –

2nd order NNLL 3-loop 2-loop 1-loop LO

3rd order N3LL 4-loop 3-loop 2-loop NLO

4th order N3LL 4-loop 3-loop 3-loop NNLO

The first three orders correspond to traditional counting in renormalization-group improved
perturbation theory, while 4thorder simply uses all the available information.

Next, we consider, the separate variations. The bands in the first four panels of Figure 7
show the effect of the scale uncertainties. The bottom two panels of Figure 7 show the effect
of the more natural correlated and anti-correlated scale variations introduced in [11]. The
correlated variation is defined to hold µj/µs fixed. So we vary

µj → c
√
τQ, µs → cτQ ,

1

2
< c < 2 . (41)

This probes the upper and lower limits on µj and µs, but avoids the unphysical region where
µs < µj or µh < µj. The orthogonal anti-correlated variation is defined to hold µ2

j/(Qµs)
fixed. It is

µ2
j → aQ2τ µs → aQτ,

1√
2
< a <

√
2 . (42)

This is independent from the correlated mode but again avoids unphysical scale choices.
Overall, we find good convergence order-by-order in perturbation theory. However, some of

the higher-order scale variations are outside of the range of the lower orders. This was not the
case for thrust, where the central value of the prediction was much more stable. Nevertheless,
for both thrust and heavy jet mass, the complete perturbative uncertainty, defined as the
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Previous work: 

shoulder factorization

6

With Arindam Bhattacharya and Matthew Schwartz

✦ Factorization theorem

✦ Trijet hemisphere soft function

✦ Sudakov Landau poles

Xiaoyuan Zhang



Shoulder factorization theorem

HJM: M(ρ)
t =

1
3

− ρ − m2
L + m2

H

LO 

phase 
space

Inclusive jet 
function

Trijet hemisphere 
soft function Measurement

Trijet 
hard 

function

dσi

dx
= σLOH(Q)∫ dm2

1dm2
2dm2

3dkLdkHJq(m2
1)Jq(m2

2)Jg(m2
3)S(x)

i (kL, kH) × M(x)
t Θ (M(x)

t )

M(τ)
t = τ −

1
3

− m2
L − m2

HThrust:

:i = g

q

q̄
g

m2
L = m2

3 + kLQ
m2

H = m2
1 + m2

2

+kHQ :i = q, q̄

q

q̄

g
m2

L = m2
2 + kLQ

m2
H = m2

1 + m2
3

+kHQ

• The factorization theorem is derived from  and trijet kinematics


• For HJM, this measurement is valid for both left shoulder ( ) and right 
shoulder ( )


• New ingredient needed: six-directional differential soft function, integrated to the 
trijet hemisphere soft function

SCETI

ρ < 1/3
ρ > 1/3

7Xiaoyuan Zhang



Trĳet hemisphere soft function

S6i(qi) = 2g2
s μ2ϵ ∫

ddk
(2π)d−1

δ+(k2)ℋ(k, qi) × [C23
n2 ⋅ n3

(n2 ⋅ k)(n3 ⋅ k)
+ C12

n1 ⋅ n2

(n1 ⋅ k)(n2 ⋅ k)
+ C13

n1 ⋅ n3

(n1 ⋅ k)(n3 ⋅ k) ]
• Definition of differential soft function

n1

n2

n3

n̄2 · k > n2 · k

n̄3 · k > n3 · k

k1

k3̄
k2

k1̄

k3
k2̄

FIG. 4: Soft radiation from the trijet configuration can be categorized as entering one of 6 sextant

wedges shaped like carpels of an orange. The boundary of each sextant is determined by two planes

orthogonal to the jet directions n1, n2 and n3. For example, radiation in the sextant labeled k1̄

(backwards to the 1-jet) is characterized by n̄2 · k > n2 · k and n̄3 · k > n3 · k.

4

m2
1 +

2Q
3 (n1 ⋅ k1 + N2 ⋅ k2̄ + N3 ⋅ k3̄) <

1
3

− ρ + m2
2 + m2

3 +
2Q
3 (n2 ⋅ k2 + n3 ⋅ k3 + n̄1 ⋅ k1̄)

• From thrust axis constraint (trijet kinematics):

• For HJM,


• For thrust,

N2 = (1,0, +
3

2
,

3
2 ), N3 = (1,0, −

3
2

,
3
2 )

N2 = n̄2, N3 = n̄3

8Xiaoyuan Zhang

soft projections

ℋ(k, qi) = θ (n2 ⋅ k − n̄2 ⋅ k) θ (n3 ⋅ k − n̄3 ⋅ k) δ (q1 −
2
3

n1 ⋅ k) + other five terms



Trĳet hemisphere soft function

• One-loop calculation

• Topology identification (7 master 

integrals)


• Numerically evaluate them and 
analytically reconstruct some 
numbers with PSLQ

ln 2, ln 3

Weight

iπ

Li2 ( 2
3 ) iIm [Li2e

iπ
3 ]

Li3( 2
3 ), Li3 ( 1

4 ), ζ3 iIm [Li3 ( i

3 )], iIm [Li3 (1 + i 3)]

Parity-even Parity-odd

One

Two

Three

Pentagon functions [Chicherin, Sotnikov, 2209.07803]

• Integrating the differential soft function:

Gieseking’s 
constant

Similar to dijet resummation, at NNLL we only need  soft constant and we put it in  and 𝒪(αs) SiL(qL, μ) SiH(qH, μ)

where  RGE can be solved in the Laplace space respectivelyKL,H(m2)
9

Non-global logs 
beyond NNLL

d�g

d⇢
= �LOH(Q)

Z
dm

2
Ldm

2
H

Z
dm

2
1,2dkHJq(m

2
1)Jq(m

2
2)S

(⇢)
iH (kH)�(m2

H �m
2
1 �m

2
2 � kHQ)

| {z }
KH(m2

H
)

⇥
Z

dm
2
3dkLJg(m

2
3)S

(⇢)
iL (kL)�(m

2
L �m

2
3 � kLQ)

| {z }
KL(m2

L
)

⇥
✓
1

3
� ⇢�m

2
L +m

2
H

◆
⇥

✓
1

3
� ⇢�m

2
L +m

2
H

◆

<latexit sha1_base64="b1HU8wDpk4sf6rvgQ0jkW8JoSH4="></latexit>
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Si(qL, qH , µ) =

Z
d6qiS6i(qi, µ)� (qL � q1 � q2̄ � q3̄) � (qH � q1̄ � q2 � q3) = SiL(qL, µ)SiH(qH , µ)Sf (qL � qH)



Sudakov Landau poles
• Resummation in the momentum space

r =
1
3

− ρ > 0

Left shoulder: 1
σLO

dσi

dρ
= Πi(∂ηl

, ∂ηh
)r ( rQ

μse−γE )
ηl+ηh sin(πηl)

π
Γ (−1 − ηl − ηh)

Right shoulder:

s = ρ −
1
3

> 0
1

σLO

dσi

dρ
= Πi(∂ηl

, ∂ηh
)s ( sQ

μse−γE )
ηl+ηh sin(πηh)

π
Γ (−1 − ηl − ηh)

With RG kernel following

0.26 0.28 0.30 0.32

-20

-10

0

10

20

ρ

Γ(
-
1-

η l
-
η h
)

η(g)
l = 2CAAΓ(μj, μs)

η(g)
h = 4CF AΓ(μj, μs)

Πg(∂ηl
, ∂ηh

) = exp [4CFS(μh, μj) + 4CFS(μs, μj) + 2CAS(μh, μj) + 2CAS(μs, μj)] exp [2Aγsg
(μs, μh) + 2Aγsqq

(μs, μh) + 2Aγjg
(μj, μh) + 4Aγjq

(μj, μh)]
× ( Q2

μ2
h )

−2AΓ(μh,μj)

H(Q, μh)j̃q (∂ηh
+ ln

Qμs

μ2
j ) j̃q̄ (∂ηh

+ ln
Qμs

μ2
j ) j̃g (∂ηl

+ ln
Qμs

μ2
j ) s̃gL(∂ηl

)s̃gH(∂ηh
)

• The  function has an infinite number of poles in the  
space (referred as Sudakov Landau pole):





• which is similar to the  resummation of Drell-Yan or 
Higgs production in the momentum space 

Γ r

−1 − ηl − ηh = 0, − 1
ρ<0

, −2, − 3,⋯

0<ρ< 1
3

qT

[Catani et al., 9604351], [Frixione, Nason, Ridolfi, 9809367], 

[Becher, Neubert, 1007.4005], [Monni, Re, Torrielli, 1604.02191], etc.

10Xiaoyuan Zhang



Current work: 

NNLL resummation

11

With Arindam Bhattacharya, Johannes Michel, 

Matthew Schwartz and Iain Stewart

✦ Resummation in Fourier space

✦  subtraction scheme

✦ Shoulder profile and result

✦ Matched to dijet resummation

ρL

Xiaoyuan Zhang



Pros: 

Sudakov Landau poles

One way to remove these linear terms is to take the second derivative σi(r) ≡
1

σLO

d3σ
dρ3

12

• There are non-log terms when expanding our resummation formula

•  shares the same form as dijet logarithms


• Our eyes are not blinded by the phase space factor 

σi(r)

Cons:
−1 − ηl − ηh = 0, − 1 ρ < 0• This only removes the first two poles

( lnn r
r )

+

<latexit sha1_base64="VIdKu5rVgqQsHL3nU7czYLffTrc="></latexit>

1

�LO

d�resum

d⇢
� ↵s

⇥
✓(r)

�
r ln2 r + r ln r + r + c1

�
+ ✓(�r)

�
�r ln2(�r)� r ln(�r)� r + c2

�⇤
+O(↵2

s)

• Our shoulder HJM measurement θ (M(ρ)
t ) = θ (r − m2

L + m2
H), r ∼ λ2

our factorization includes

m2
L ∼ 1, m2

H ∼ 1;  r ∼ λ2

m2
L ∼ 1, m2

H ∼ λ2;  r ∼ 1

m2
L ∼ λ2,  m2

H ∼ 1;  r ∼ 1 m2
L ∼ 1, m2

H ∼ 1;  r ∼ 1

m2
L ∼ λ2,  m2

H ∼ λ2;  r ∼ λ2

where EFT is valid irrelevant regions
Possible hierarchies between hemisphere masses:

Our resummation contains non-EFT contributions
Xiaoyuan Zhang



Sudakov Landau poles

Fourier space is the only space that diagonalizes the  function and allows us to resum 
both shoulders together 

δ

• Recall  convolution for second derivative:r

σi(r) ∝ fi(r) =
1

Γ(ηl)Γ(ηh) ∫
∞

0
dm2

L ∫
∞

0
dm2

H (m2
L)ηl−1(m2

H)ηh−1δ (r − m2
L + m2

H)

= |r |ηl+ηh−1 Γ (1 − ηl − ηh) [θ(r)
sin(ηlπ)

π
+ θ(−r)

sin(ηhπ)
π ]

f̃i(y) = ∫
+∞

−∞
dr eiyrfi(r) = (−iy+)−ηl(+iy−)−ηhFourier transformation

13

• Another observation: from recoil sensitivity, each  receives contribution from both 
left shoulder and right shoulder

ρ

y± = y ± iϵ

Alternatively, if we do 
the  integral first:r ∫

∞

−∞
dr eiyr ∫

∞

0
dm2

L ∫
∞

0
dm2

H (m2
L)ηl−1(m2

H)ηh−1δ (r − m2
L + m2

H)

= ∫
∞

0
dm2

L (m2
L)ηl−1eim2

L y

ℑ(y)>0

∫
∞

0
dm2

H (m2
H)ηh−1e−im2

H y

ℑ(y)<0

 also 
suppresses the large 

mass region

e−ϵ(m2
L+m2

H)

Laplace  Fourier:≠ Traditional resummation for event shapes (like thrust) in the 
Laplace space doesn’t work for shoulder logarithms

Xiaoyuan Zhang



• The canonical scale in the Fourier space is


• To obtain the spectrum, we need to inverse Fourier transform  and integrate 
over  (or ) twice 

σ̃i(y)
ρ r

Fourier space scale-setting

σ̃i(y) = ∫
+∞

−∞
dr eiyrσi(r) = Πi(∂ηl

, ∂ηh
) × (−

iyeγEμs

Q )
−ηl

(+
iyeγEμs

Q )
−ηh

μh = Q, μj =
Q
|y |

, μs =
Q

|y |

1
σLO

d3σ
dρ3

= ∫
+∞

−∞

dy
2π

e−iyr′ ′ ̃σi(y) = 2ℜ [∫
∞

0

dy
2π

e−iyr′ ′ ̃σi(y)], σ̃⋆
i (−y) = σ̃i(y)

• The integration boundary . This introduces a residual linear function.rL =
1
3

− ρL

• Resummed second derivative

14

Kernel function

1
σLO

dσ
dρ

= ∫
r

rL

dr′ ∫
r′ 

rL

dr′ ′ 
1

σLO

d3σ
dρ3

= 2ℜ [∫
∞

0

dy
2π ( e−irLy − e−iry

y2
+ i

e−irLy(rL − r)
y )σ̃i(y)]

≡ 2ℜ [∫
∞

0

dy
2π

K(y, r, rL)σ̃i(y)]

Xiaoyuan Zhang



Fixed-order matching
• Resummation matched to fixed-order:

• But there is still residual  (or ) dependence


• In fact, picking a different boundary  leads to an extra linear function 
 that starts at one order higher than fixed-order matching

ρL rL

r′ L
a1(αs, rL, r′ L)r + a2(αs, rL, r′ L)

15
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rL

dr0
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rL

dr00
⇥
�resum(r00, µres)� �resum(r00, µFO)

⇤

=
d�FO

d⇢
+ �LO2<

⇢Z 1

0

dy

2⇡
K(y, r, rL)

⇥
�̃i(y, µ

res)� �̃i(y, µ
FO)

⇤�
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µFO

h,j,s = Q

• Question: can we subtract -dependent terms to all orders in ?


• Our resummation gives rise to

ρL αs

θ(r) r ∑
n≥0,m≥1

cn,mαn
s lnm r + rl1(αs, rL) + θ(−r) (−r) ∑

n≥0,m≥1

dn,mαn
s lnm(−r) + rl2(αs, rL) +c(αs, rL)

However, EFT only predicts  so we need to subtract the artificial piecel1(αs, rL) − l2(αs, rL)

Xiaoyuan Zhang



        subtraction schemeρL

f(r, rL) = θ(r) r ∑
n≥0,m≥0

cn,mαn
s lnm r + θ(−r) (−r) ∑

n≥0,m≥0

dn,mαn
s lnm(−r) + rl(αs, rL) + c(αs, rL)

linear background

f(1,rL) = ∑n≥0 cn,0αn
s + l(αs, rL) + c(αs, rL)

f(−1,rL) = ∑n≥0 dn,0αn
s − l(αs, rL) + c(αs, rL)

f(0,rL) = c(αs, rL)

• There are three special values that 
have access to all orders result

ξ ≡
∑n≥0 cn,0αn

s

∑n≥0 (cn,0 + dn,0)αn
s

, 0 ≤ ξ ≤ 1 LO singular suggests ξ = 1

• It turns out that doing the subtraction is equivalent to modifying the kernel

K̃(r, ξ) =
1

2πy2 [1 − e−iyr + (1 − ξ)re−iy − ξreiy + r(2ξ − 1)]

16

• There are various ways to control the slope in each shoulder. 


• The simplest one is to introduce a uniform parameter  (referred as -scheme)ξ ξ

• Eventually,  becomes an additional source of uncertainty.ξ

Xiaoyuan Zhang



NNLL result with canonical scale

• Frozen soft scale:


• Central value: the kink is smoothed by resummation


• Band variation: , , correlated  and 


Non-overlapping comes from fixed-order discrepancy

μh μj μs ξ

<latexit sha1_base64="WybJQBwqZ6UoP+qvhthfQ/KqSUs="></latexit>

µs =
q
(µmin

s )2 +Q2/y2, µmin
s = 2GeV
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Shoulder profile scale
• We choose the  profile function:qT

18

The left profile is determined by 
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[µFO
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8
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µcan
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1

µFO

j/s = Q if |r| > r(L,R)
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smooth function else
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[Lustermans, Michel, Tackmann, Waalewijn, 1901.03331]



Review: dĳet resummation
[Becher, Schwartz, 0803.0342], [Chien, Schwartz, 1005.1644]

1
σ0

R (ρ)
2 (ρ) =

1
σ0 ∫

ρ

0
dρ′ 

dσ2

dρ′ 
= exp [4CFS(μh, μj) + 4CFS(μs, μj) − 2AH(μh, μs) + 4AJ(μj, μs)] ( Q2

μ2
h )

−2AΓ(μh,μj)

× H(Q2, μ2
h)jq (∂ηh

+ ln
Qμs

μ2
j ) j̃q (∂ηl

+ ln
Qμs

μ2
j ) s̃μ(∂η1

)s̃μ(∂η2
)s̃f (∂η1

− ∂η2) ( ρQ
μs )

η1+η2
e−γEη1

Γ(η1 + 1)
e−γEη2

Γ(η2 + 1)

• The  resummation
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N3LL
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Figure 6: Convergence of resummed and fixed-order distributions. aleph data (red) at 91.2
GeV is included for reference. All plots have αs(mZ) = 0.1214.

by factors of 2. Figure 6 shows the effect of the envelope of these variations on the heavy jet
mass distribution, for four orders in perturbation theory. We use the same definitions for the
various orders as in [11]:

Order resum. Γcusp γn cn matching

1st order NLL 2-loop 1-loop tree –

2nd order NNLL 3-loop 2-loop 1-loop LO

3rd order N3LL 4-loop 3-loop 2-loop NLO

4th order N3LL 4-loop 3-loop 3-loop NNLO

The first three orders correspond to traditional counting in renormalization-group improved
perturbation theory, while 4thorder simply uses all the available information.

Next, we consider, the separate variations. The bands in the first four panels of Figure 7
show the effect of the scale uncertainties. The bottom two panels of Figure 7 show the effect
of the more natural correlated and anti-correlated scale variations introduced in [11]. The
correlated variation is defined to hold µj/µs fixed. So we vary

µj → c
√
τQ, µs → cτQ ,

1

2
< c < 2 . (41)

This probes the upper and lower limits on µj and µs, but avoids the unphysical region where
µs < µj or µh < µj. The orthogonal anti-correlated variation is defined to hold µ2

j/(Qµs)
fixed. It is

µ2
j → aQ2τ µs → aQτ,

1√
2
< a <

√
2 . (42)

This is independent from the correlated mode but again avoids unphysical scale choices.
Overall, we find good convergence order-by-order in perturbation theory. However, some of

the higher-order scale variations are outside of the range of the lower orders. This was not the
case for thrust, where the central value of the prediction was much more stable. Nevertheless,
for both thrust and heavy jet mass, the complete perturbative uncertainty, defined as the

14
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Overall, we find good convergence order-by-order in perturbation theory. However, some of

the higher-order scale variations are outside of the range of the lower orders. This was not the
case for thrust, where the central value of the prediction was much more stable. Nevertheless,
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Resummation order:
αs(mZ) = 0.1214
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Four-loop cusp: [Henn, Korchemsky, Mistlberger, 1911.10174]

[Manteuffel, Panzer, Schabinger, 2002.04617]

[A. Heister et al. [ALEPH Collaboration], 2004]



• Preliminarily, we will use thrust profile for dijet resummation and canonical/  profile 
for shoulder resummation.

qT

N3LL dĳet + NNLL shoulder

[Abbate, Fickinger, Hoang, Mateu, Stewart, 1006.3080]

• Joint resummation of dijet and shoulder logarithms:

20

• Shoulder resummation provides significant 
corrections:


• Discrepancy between theory and data: We 
will need to account for power corrections
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Conclusion

• We present the NNLL resummation of Sudakov shoulder logarithms in heavy jet 
mass. 

✦ Differentiating twice and scale setting in the Fourier space removes all spurious 

poles in the momentum space.

✦  subtraction scheme gives us control on the ambiguous slope in both 

shoulders


• We also provide the joint resummation of both dijet and shoulder logs, which is an 
essential part in the  measurement.


• Future works:

✦ The complete uncertainty estimation

✦ Renormalon and power corrections in the trijet limit


✦ Extract the value of  from heavy jet mass data

ρL

αs

αs

Thank you for your attention!
21Xiaoyuan Zhang



Backup: Thrust vs HJM (NP)

Xiaoyuan Zhang

• NNLO HJM seems to have different shape from data
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Figure 7: Thrust distribution at Q = MZ at LO (blue), NLO (green) and NNLO (red). The solid
lines represent the prediction for renormalisation scale µ = Q and αs(MZ) = 0.1189, while the
shaded region shows the variation due to varying the renormalisation scale between µ = Q/2 and
µ = 2Q. The data is taken from [1].

The inclusion of the NNLO corrections enhances the thrust distribution by around

(15-20)% over the range 0.04 < (1− T ) < 0.33, where −ln(1−T ) is not too large. Outside

this range, one does not expect the perturbative fixed-order prediction to yield reliable

results. For (1 − T ) → 0, the convergence of the perturbative series is spoilt by powers

of logarithms ln(1− T ) appearing in higher perturbative orders, thus necessitating an all-

order resummation of these logarithmic terms [10, 11], and a matching of fixed-order and

resummed predictions [48].

The perturbative parton-level prediction is compared with the hadron-level data from

the ALEPH collaboration [1] in Figure 7 and Figure 8. We observe that for all Q values,

the shape and normalisation of the parton level NNLO prediction agrees better with the

data than at NLO. We also see that the NNLO corrections account for approximately half

of the difference between the parton-level NLO prediction and the hadron-level data.

6.2 Heavy jet mass

The perturbative prediction for the heavy jet mass distribution is displayed in Figure 9.

The solid lines represent the prediction at the physical scale Q = MZ , while the shaded

bands represent the effect of varying the renormalisation scale upwards and downwards

by a factor of 2. We observe that the relative scale uncertainty is reduced by about 50%

between NLO and NNLO. It is noteworthy that the original motivation for introducing the

heavy jet mass distribution [20] was the hope for improved perturbative stability over the

thrust distribution. This improved stability was not evident from the existing NLO results

alone, but becomes visible at NNLO.

Compared to NLO, the inclusion of the NNLO corrections enhances the heavy jet

mass distribution by around 10% over the range 0.02 < ρ < 0.33, where ln(ρ) is not too

– 15 –
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Figure 9: Heavy jet mass distribution at Q = MZ at LO (blue), NLO (green) and NNLO (red).
The solid lines represent the prediction for renormalisation scale µ = Q and αs(MZ) = 0.1189, while
the shaded region shows the variation due to varying the renormalisation scale between µ = Q/2
and µ = 2Q. The data is taken from [1].

large. At smaller ρ values, large ln(1/ρ) corrections must be resummed to all orders [49]

and matched onto the perturbative prediction. Nevertheless, in the moderate to large ρ

region, the NNLO corrections render the fixed order prediction significantly closer to the

experimental data [1].

Figure 10 shows the prediction for a range of Q values together with the hadron-level

data from the ALEPH collaboration [1]. For this observable, the NNLO corrections are

relatively small, however, for all Q values, the shape and normalisation of the parton-level

NNLO prediction agrees slightly better with the hadron-level data than at NLO.

6.3 Jet broadenings

Predictions for the total and wide jet broadenings are displayed in Figures 11 and 12.

The solid lines represent the prediction at the physical scale Q = MZ , while the shaded

bands represent the effect of varying the renormalisation scale upwards and downwards by

a factor of 2. We observe that the relative scale uncertainty in the BT (BW ) distribution

is reduced by about 40% (50%) between NLO and NNLO.

As anticipated from the discussion in section 5.3, we observe that the perturbative

corrections are smaller for BW than for BT . In the region where perturbation theory

is expected to yield reliable results, (BT , BW ) > 0.05, we observe an enhancement of

(15-20)% in BT and of (8-12)% in BW . As with (1 − T ) and the heavy jet mass, the

two broadenings are identical at leading order, but display a largely different behaviour

in the higher perturbative corrections. At smaller values of broadening, large logarithmic

corrections occur which must be resummed [21].
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• Scheme dependence:

• p-scheme: in terms of 3-momenta

• E-scheme: in terms of energy and angles

[Ridder, Gehrmann, Glover, Heinrich, 0711.4711]

[Mateu, Stewart, Thaler, 1209.3781]

[Salam, Wicke, hep-ph/0102343]
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Figure 10: Plots showing αs and α0 values obtained by fitting to data corrected to a variety
of schemes and hadronisation levels. Corrections relative to the default schemes have been
obtained using Ariadne, as discussed in the text.
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Backup: Thrust vs HJM (NP)

Xiaoyuan Zhang
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Figure 11: The hadronisation correction as a function of the value of the variable at parton
level.

In [37] it has been pointed out that for the longitudinal fragmentation functions there
can also be corrections proportional to mb/Q associated with the decay of secondary heavy-
quarks produced from a soft gluon, though it is suggested that for today’s energies such a
behaviour may not yet have set in. The possibility of a similar contribution in event shapes
should be investigated.

D The heavy-jet mass

We observed in section 6 that even in a ‘proper’ scheme the (αs,α0) fits for the heavy-jet
mass (and perhaps also the wide-jet broadening) seem to some extent inconsistent with the
results for the other variables. The distinguishing feature of the heavy-jet mass is its non-
inclusiveness, since it measures a specific hemisphere of the event (the heavy one), whereas
other variables measure the properties of the whole event.

We may well ask why non-inclusiveness leads to differences. One interesting analysis
has been presented in [18], which suggests that hadronisation corrections can be different in
the two hemispheres and convert a perturbatively light jet into a heavy one. However this
effectively increases the power correction rather than decreasing it and so cannot explain
the relatively small αs and α0 values that are observed. This does not mean that such a
mechanism is not present at all — indeed in the difference between the E and p schemes the
heavy jet mass correction is larger than that for the single jet mass (cf. fig. 6), and this could
be due to such a mechanism (it could also simply be because there are more hadrons in the
heavy hemisphere).

To help understand what is happening we have used Pythia to look at the mean hadro-
nisation as a function of the value of the variable at parton level, figure 11. For the thrust,
the hadronisation is fairly independent of the parton-level thrust value. For the heavy jet

41
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of a qq̄ dipole. This must happen, however, when the logarithm of the shape variable is

so large that it clearly prevails over single logs and constant terms. In the case of C and

1� T , one finds that for values of the shape variable v ⇡ 10�3 the ⇣ function di↵ers from

the two-jet limit value by roughly 10%, i.e. of the order of 1/ log(v), that is the natural

size of single-log corrections.

The case of M2
H and M2

D, however, are much more extreme. In this case, in order to
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of a qq̄ dipole. This must happen, however, when the logarithm of the shape variable is

so large that it clearly prevails over single logs and constant terms. In the case of C and

1� T , one finds that for values of the shape variable v ⇡ 10�3 the ⇣ function di↵ers from

the two-jet limit value by roughly 10%, i.e. of the order of 1/ log(v), that is the natural

size of single-log corrections.
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D, however, are much more extreme. In this case, in order to
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• Hadronization effects

• Something fishy about the power corrections for HJM that we need to understand



Backup: fixed-order matching

Xiaoyuan Zhang

• We first introduce the matched second derivative

• This is simplified to

• Then require the integrated spectrum agrees with fixed order at two points ρL,R
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Backup: dĳet profile

Xiaoyuan Zhang

[Abbate, Fickinger, Hoang, Mateu, Stewart, 1006.3080]

• We adopt the  thrust profile for dijet resummation and rescale the endpoint 
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