TMD fragmentation functions for polarized J / ψ production

Reed Hodges, Duke University

SCET 2023

Co-authors:
Marston Copeland \& Thomas Mehen, Duke University Sean Fleming \& Rohit K. Gupta, University of Arizona

Motivation

(a) photon-hadron frame

(b) hadron-hadron frame

- TMD fragmentation functions (FFs) for polarized parton and polarized hadron have yet to be computed in the literature
- studying quarkonium production is a way to learn about gluon TMDs; EIC will be able to study it via DIS

EIC Yellow Report, Nucl. Phys. A 1026 (2022) 122447; figures from TMD Handbook

$$
\begin{aligned}
& n^{\mu}=\frac{1}{\sqrt{2}}(1,0,0,1) \\
& \bar{n}^{\mu}=\frac{1}{\sqrt{2}}(1,0,0,-1) \\
& P^{\mu}=(\bar{n} \cdot P) n^{\mu}+\frac{M^{2}}{2 \bar{n} \cdot P} \bar{n}^{\mu} \\
& Q^{2}=-q^{2}=-\left(l-l^{\prime}\right)^{2} \\
& x=\frac{Q^{2}}{2 p \cdot q}, \quad y=\frac{p \cdot q}{p \cdot l}, \quad z=\frac{p \cdot P}{p \cdot q}
\end{aligned}
$$

Cross section

$$
\frac{d \sigma}{d \phi^{l} d x d z d y d \mathbf{q}_{T}}=2 M \frac{\alpha^{2}}{4 Q^{4}} \frac{y}{z} L_{\mu \nu} W^{\mu \nu}
$$

- leptonic tensor:

$$
L_{\mu \nu}=e^{-2}\left\langle l^{\prime}\right| J_{\mu}(0)|l\rangle\langle l| J_{\nu}^{\dagger}(0)\left|l^{\prime}\right\rangle
$$

- hadronic tensor:
$2 M W^{\mu \nu}=2 z \int d^{2} \mathbf{p}_{T} d^{2} \mathbf{k}_{T} \delta^{2}\left(\mathbf{p}_{T}+\mathbf{q}_{T}-\mathbf{k}_{T}\right) \operatorname{tr}\left[2 \Phi\left(x, \mathbf{p}_{T}\right) \gamma^{\mu} 2 \Delta\left(z, \mathbf{k}_{T}\right) \gamma^{\nu}\right]$.
- Φ is TMD PDF, Δ is TMD FF

TMDFFs

$$
\begin{aligned}
\Delta_{q \rightarrow J / \psi}\left(z, \mathbf{b}_{T}, P^{+} / z\right)= & \frac{1}{2 z N_{c}} \operatorname{Tr} \int \frac{d b^{-}}{2 \pi} e^{i b^{-} P^{+} / z} \sum_{X} \Gamma_{\alpha \alpha^{\prime}} \\
& \times\langle 0| W_{\bar{n}} \psi_{i}^{\alpha}(b)|J / \psi(P), X\rangle\langle J / \psi(P), X| \bar{\psi}_{i}^{\alpha^{\prime}}(b) W_{\bar{n}}^{\dagger}|0\rangle \\
\Delta_{g \rightarrow J / \psi}^{\alpha \alpha^{\prime}}\left(z, \mathbf{b}_{T}, P^{+}\right)= & \frac{1}{2 z^{2} P^{+}} \int \frac{d b^{-}}{2 \pi} e^{i b^{-}\left(P^{+} z\right)}\langle 0| W_{\bar{n}} G^{+\alpha}|J / \psi(P), X\rangle \\
& \times\langle J / \psi(P), X| G^{+\alpha^{\prime}} W_{\bar{n}}^{\dagger}|0\rangle
\end{aligned}
$$

NRQCD factorization

$$
d \sigma(a+b \rightarrow \mathcal{Q}+X)=\sum_{n} d \sigma(a+b \rightarrow Q \bar{Q}(n)+X)\left\langle\mathcal{O}_{n}^{\mathcal{Q}}\right\rangle
$$

- $d \sigma(a+b \rightarrow Q \bar{Q}(n)+X)$ is the perturbative short-distance cross section
- expansion in α_{s}
- $\left\langle\mathcal{O}_{n}^{\mathcal{Q}}\right\rangle$ is the NRQCD long-distance matrix element (LDME)
- terms scale in powers of v

NRQCD LDMEs

$$
\begin{aligned}
& \mathcal{O}_{n}^{H}=\chi^{\dagger} \mathcal{K}_{n} \psi\left(\sum_{X} \sum_{m_{J}}|H+X\rangle\langle H+X|\right) \psi^{\dagger} \mathcal{K}_{n}^{\prime} \chi \\
& \quad=\chi^{\dagger} \mathcal{K}_{n} \psi\left(a_{H}^{\dagger} a_{H}\right) \psi^{\dagger} \mathcal{K}_{n}^{\prime} \chi, \\
& \mathcal{O}_{8}^{H}\left({ }^{3} S_{1}\right)=\chi^{\dagger} \sigma^{i} T^{a} \psi\left(a_{H}^{\dagger} a_{H}\right) \psi^{\dagger} \sigma^{i} T^{a} \chi . \\
& \mathcal{O}_{1}^{H}\left({ }^{3} P_{0}\right)=\frac{1}{3} \chi^{\dagger}\left(-\frac{i}{2} \overleftrightarrow{\mathbf{D}} \cdot \boldsymbol{\sigma}\right) \psi\left(a_{H}^{\dagger} a_{H}\right) \psi^{\dagger}\left(-\frac{i}{2} \overleftrightarrow{\mathbf{D}} \cdot \boldsymbol{\sigma}\right) \chi, \\
& \mathcal{O}_{1}^{H}\left({ }^{3} S_{1}\right)=\chi^{\dagger} \sigma^{i} \psi\left(a_{H}^{\dagger} a_{H}\right) \psi^{\dagger} \sigma^{i} \chi, \\
& \mathcal{O}_{8}^{H}\left({ }^{1} S_{0}\right)=\chi^{\dagger} T^{a} \psi\left(a_{H}^{\dagger} a_{H}\right) \psi^{\dagger} T^{a} \chi,
\end{aligned}
$$

- at lowest order in v we have $\left\langle\mathcal{O}^{J / \psi}\left({ }^{3} S_{1}^{[1]}\right)\right\rangle \sim v^{3}$
- color singlet does not contribute at LO
- lowest order non-vanishing LDME for our purposes is $\left\langle\mathcal{O}_{n}^{\mathcal{Q}}\right\rangle=\left\langle\mathcal{O}^{J / \psi}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle \approx 4 m_{c}^{2} \xi^{\dagger} \sigma^{i} T^{a} \eta \eta^{\dagger} \sigma^{i} T^{a} \xi \sim v^{7}$.
${ }^{1} S_{0}^{[8]}$ and ${ }^{3} P_{J}^{[8]}$ also scale as v^{7} but do not contribute at LO in our current calculation

Uncertainty surrounding LDMEs

- polarization puzzle: NRQCD global fits (Butenschoen \& Kniehl PRD 84 (2011) 051501) predict J / ψ to be transversely polarized at high p_{T} but this disagrees with data which says it is unpolarized
- some work done to resolve the puzzle by removing small p_{T} values from fits
- Chao et al. PRL 108 (2012) 242004
- Bodwin et al. PRL 113 (2014) 022001
- Faccioli et al. PLB 736 (2014) 98
- Lourenço et al. NPA 932 (2014) 466-471
- these different approaches lead to disagreeing values for the LDMEs
- we will be able to compute new observables to extract the LDMEs

	$\left\langle\mathcal{O}^{J / \psi}\left({ }^{3} S_{1}^{[1]}\right)\right\rangle$ $\times \mathrm{GeV}^{3}$	$\left\langle\mathcal{O}^{J / \psi}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle$ $\times 10^{-2} \mathrm{GeV}^{3}$	$\left\langle\mathcal{O}^{J / \psi}\left({ }^{1} S_{0}^{[8]}\right)\right\rangle$ $\times 10^{-2} \mathrm{GeV}^{3}$	$\left\langle\mathcal{O}^{J / \psi}\left({ }^{3} P_{0}^{[8]}\right)\right\rangle / m_{c}^{2}$ $\times 10^{-2} \mathrm{GeV}^{3}$
B \& K [5, 6]	1.32 ± 0.20	0.224 ± 0.59	4.97 ± 0.44	-0.72 ± 0.88
Chao, et al. [12]	1.16 ± 0.20	0.30 ± 0.12	8.9 ± 0.98	0.56 ± 0.21
Bodwin et al. [13]	1.32 ± 0.20	1.1 ± 1.0	9.9 ± 2.2	0.49 ± 0.44

Table from Bain et al. PRL 119 (2017) 3, 032002

Projection operators

Quark :

- unpolarized : $\Gamma=\AA \quad \leftarrow$ this has been done by Echevarria et al. JHEP 10 (2020) 164
- longitudinally polarized: $\Gamma=\nsim \gamma_{5}$
- transversely polarized: $\Gamma_{+\alpha}=\sigma_{+\alpha} \gamma_{5}$

Gluon :

- unpolarized: contract with $g_{T}^{\alpha \alpha^{\prime}}$
- longitudinally polarized: contract with $\epsilon_{T}^{\alpha \alpha^{\prime}}$
- transversely polarized: contract with symmetric traceless tensor combinations of k_{T}

J / ψ spin decomposition

$$
\begin{gathered}
{\left[\xi^{\dagger} \sigma^{i} T^{A} \eta\right]\left[\eta^{\dagger} \sigma^{j} T^{A} \xi\right] \rightarrow \varepsilon^{* i} \varepsilon^{j}\left[\xi^{\dagger} \sigma^{l} T^{A} \eta\right]\left[\eta^{\dagger} \sigma^{l} T^{A} \xi\right]} \\
\varepsilon^{* i} \varepsilon^{j}=\frac{1}{3} \delta^{i j}+\frac{i}{2} \varepsilon^{i j k} S^{k}-T^{i j}, \\
\vec{S}=\operatorname{Im}\left(\varepsilon^{*} \times \varepsilon\right)=\left(S_{T}^{x}, S_{T}^{y}, S_{L}\right) \\
T^{i j}=\frac{1}{3} \delta^{i j}-\operatorname{Re}\left(\varepsilon^{* i} \varepsilon^{j}\right)=\frac{1}{2}\left(\begin{array}{ccc}
-\frac{2}{3} S_{L L}+S_{T T}^{x x} & S_{T T}^{x y} & S_{L T}^{x} \\
S_{T T}^{y x} & -\frac{2}{3} S_{L L}-S_{T T}^{x x} & S_{L T}^{y} \\
S_{L T}^{x} & S_{L T}^{y} & \frac{4}{3} S_{L L}
\end{array}\right) .
\end{gathered}
$$

Boost to yield

$$
\Lambda^{\mu}{ }_{i} \Lambda^{\nu}{ }_{j} \varepsilon^{* i} \varepsilon^{j}=-\frac{1}{3}\left(g^{\mu \nu}-\frac{P^{\mu} P^{\nu}}{M^{2}}\right)+\frac{i}{2 M} \epsilon^{\mu \nu \alpha \beta} P_{\alpha} S_{\beta}-T^{\mu \nu}
$$

Components of $T^{i j}$

$\boldsymbol{\Sigma}^{i} \hat{n}_{i}=\boldsymbol{\Sigma}_{x} \cos \theta \cos \varphi+\boldsymbol{\Sigma}_{y} \cos \theta \sin \varphi+\boldsymbol{\Sigma}_{z} \sin \theta$,
$P\left(m_{(\theta, \varphi)}\right)=\operatorname{Tr}\left\{\boldsymbol{\rho}\left|m_{(\theta, \varphi)}\right\rangle\left\langle m_{(\theta, \varphi)}\right|\right\}$.
$S_{L L}=\frac{1}{2} P\left(1_{(0,0)}\right)+\frac{1}{2} P\left(-1_{(0,0)}\right)-P\left(0_{(0,0)}\right)$,
$S_{L T}^{x}=P\left(0_{\left(-\frac{\pi}{4}, 0\right)}\right)-P\left(0_{\left(\frac{\pi}{4}, 0\right)}\right)$,
$S_{L T}^{y}=P\left(0_{\left(-\frac{\pi}{4}, \frac{\pi}{2}\right)}\right)-P\left(0_{\left(\frac{\pi}{4}, \frac{\pi}{2}\right)}\right)$,
$S_{T T}^{x x}=P\left(0_{\left(\frac{\pi}{2},-\frac{\pi}{4}\right)}\right)-P\left(0_{\left(\frac{\pi}{2}, \frac{\pi}{4}\right)}\right)$,
$S_{T T}^{x y}=P\left(0_{\left(\frac{\pi}{2}, \frac{\pi}{2}\right)}\right)-P\left(0_{\left(\frac{\pi}{2}, 0\right)}\right)$.

$S_{T T}^{x y}=$

$S_{L T}^{y}=$

$S_{T T}^{x x}=$

from: Bacchetta \& Mulders, PRD 62(2000) 114004

Quark fragmentation

$$
\langle 0| W_{\bar{n}} \psi_{i}^{\alpha}(b)|J / \psi(P), X\rangle\langle J / \psi(P), X| \bar{\psi}_{i}^{\alpha^{\prime}}(b) W_{\bar{n}}^{\dagger}|0\rangle
$$

Example diagram

- perform contractions between Wilson line, quark field, final state

$$
\begin{aligned}
= & \frac{g^{4}}{4 z M^{4} N_{c}} \int \frac{d^{D} k}{(2 \pi)^{D}} \int d b^{-} e^{i b^{-} P^{+} / z} e^{-i b(k+P)} \\
& \times \operatorname{Tr}\left[k k \gamma^{\mu} \frac{\not k+\not P}{(k+P)^{2}+i \epsilon}\left(\Gamma \chi_{\mu \nu}\right) \frac{\not k+\not p}{(k+P)^{2}+i \epsilon} \gamma^{\nu}\right] \delta\left(k^{2}\right)
\end{aligned}
$$

where

$$
\chi_{\mu \nu}=\bar{u}\left(p^{\prime}\right) \gamma_{\mu} T^{a} v\left(p^{\prime}\right) \bar{v}\left(p^{\prime}\right) \gamma_{\nu} T^{b} u\left(p^{\prime}\right)
$$

- b^{-}integral yields delta function, which combined with $\delta\left(k^{2}\right)$ means all the integration is trivial

Gluon fragmentation

$$
\begin{aligned}
& \langle 0| W_{\bar{n}} G^{+\alpha}|J / \psi(P), X\rangle\langle J / \psi(P), X| G^{+\alpha^{\prime}} W_{\bar{n}}^{\dagger}|0\rangle \\
= & \frac{-g^{4}}{2 M^{4} P_{-}} \delta(1-z)\left(P_{-} g^{\alpha \mu}-P^{\alpha} \bar{n}^{\mu}\right)\left(P^{-} g^{\beta \nu}-P^{\beta} \bar{n}^{\nu}\right) I_{0} \varepsilon_{\nu}^{*} \varepsilon_{\mu}
\end{aligned}
$$

Defined $I_{0} \equiv \frac{M^{2}}{\left(N_{c}^{2}-1\right)(d-1)} \xi^{\dagger} \sigma^{i} T^{a} \eta \eta^{\dagger} \sigma^{i} T^{a} \xi \ldots$ will eventually match onto LDME

Decomposing the FFs

$$
\begin{aligned}
\Phi_{U}\left(x, \boldsymbol{p}_{T}\right)= & \frac{1}{4}\left\{f_{1}\left(x, p_{T}^{2}\right) \not x_{+}+\left(h_{1}^{\perp}\left(x, p_{T}^{2}\right) \sigma_{\mu \nu} \frac{p_{T}^{\mu}}{M} n_{+}^{\nu}\right)\right\} \\
\Phi_{L}\left(x, \boldsymbol{p}_{T}\right)= & \frac{1}{4}\left\{g_{1 L}\left(x, p_{T}^{2}\right) S_{L} \gamma_{5} \not n_{+}+h_{1 L}^{\perp}\left(x, p_{T}^{2}\right) S_{L} \mathrm{i} \sigma_{\mu \nu} \gamma_{5} n_{+}^{\mu} \frac{p_{T}^{\nu}}{M}\right\} \\
\Phi_{T}\left(x, \boldsymbol{p}_{T}\right)= & \frac{1}{4}\left\{g_{1 T}\left(x, p_{T}^{2}\right) \frac{\boldsymbol{S}_{T} \cdot \boldsymbol{p}_{T}}{M} \gamma_{5} \not x_{+}+h_{1 T}\left(x, p_{T}^{2}\right) \mathrm{i} \sigma_{\mu \nu} \gamma_{5} n_{+}^{\mu} S_{T}^{\nu}\right. \\
& +h_{1 T}^{\perp}\left(x, p_{T}^{2}\right) \frac{\boldsymbol{S}_{T} \cdot \boldsymbol{p}_{T}}{M} \mathrm{i} \sigma_{\mu \nu} \gamma_{5} n_{+}^{\mu} \frac{p_{T}^{\nu}}{M} \\
& \left.+\left(f_{1 T}^{\perp}\left(x, p_{T}^{2}\right) \epsilon_{\mu \nu \rho \sigma} \gamma^{\mu} n_{+}^{\nu} \frac{p_{T}^{\rho}}{M} S_{T}^{\sigma}\right)\right\}, \\
\Phi_{L L}\left(x, \boldsymbol{p}_{T}\right)= & \frac{1}{4}\left\{f_{1 L L}\left(x, p_{T}^{2}\right) S_{L L} \not x_{+}+\left(h_{1 L L}^{\perp}\left(x, p_{T}^{2}\right) S_{L L} \sigma_{\mu \nu} \frac{p_{T}^{\mu}}{M} n_{+}^{\nu}\right)\right\}, \\
\Phi_{L T}\left(x, \boldsymbol{p}_{T}\right)= & \frac{1}{4}\left\{f_{1 L T}\left(x, p_{T}^{2}\right) \frac{\boldsymbol{S}_{L T} \cdot \boldsymbol{p}_{T}}{M} \not n_{+}+\left(g_{1 L T}\left(x, p_{T}^{2}\right) \epsilon_{T}^{\mu \nu} S_{L T} \frac{p_{T \nu}}{M} \gamma_{5} \not n_{+}\right)\right. \\
& +\left(h_{1 L T}^{\prime}\left(x, p_{T}^{2}\right) \mathrm{i} \sigma_{\mu \nu} \gamma_{5} n_{+}^{\mu} \epsilon_{T}^{\nu \rho} S_{L T \rho}\right) \\
& \left.+\left(h_{1 L T}^{\perp}\left(x, p_{T}^{2}\right) \frac{\boldsymbol{S}_{L T} \cdot \boldsymbol{p}_{T}}{M} \sigma_{\mu \nu} \frac{p_{T}^{\mu}}{M} n_{+}^{\nu}\right)\right\}, \\
\Phi_{T T}\left(x, \boldsymbol{p}_{T}\right)= & \frac{1}{4}\left\{f_{1 T T}\left(x, p_{T}^{2}\right) \frac{\boldsymbol{p}_{T} \cdot \boldsymbol{S}_{T T} \cdot \boldsymbol{p}_{T}}{M^{2}} \not n_{+}\right. \\
& -\left(g_{1 T T}\left(x, p_{T}^{2}\right) \epsilon_{T}^{\mu \nu} S_{T T} \nu_{\rho} \frac{p_{T}^{\rho} p_{T \mu}}{M^{2}} \gamma_{5} \not p_{+}\right) \\
& -\left(h_{1 T T}^{\prime}\left(x, p_{T}^{2}\right) \mathrm{i} \sigma_{\mu \nu} \gamma_{5} n_{+}^{\mu} \epsilon_{T}^{\nu \rho} S_{T T} \rho \sigma \frac{p_{T}^{\sigma}}{M}\right) \\
& \left.+\left(h_{1 T T}^{\perp}\left(x, p_{T}^{2}\right) \frac{\boldsymbol{p}_{T} \cdot \boldsymbol{S}_{T T} \cdot \boldsymbol{p}_{T}}{M^{2}} \sigma_{\mu \nu} \frac{p_{T}^{\mu}}{M} n_{+}^{\nu}\right)\right\} .
\end{aligned}
$$

- to go from PDFs to FFs:
$\left\{f, g, h, x, p, n_{+}\right\} \rightarrow$ $\left\{D, G, H, z, k, n_{-}\right\}$

TMDFFs: table

		Parton polarization		
		Unpolarized	Longitudinal	Transverse
	Unpolarized	D_{1}		H_{1}^{\perp}
	Longitudinal		$G_{1 L}$	$H_{1 L}^{\perp}$
	Transverse	$D_{1 T}^{\perp}$	$G_{1 T}^{\perp}$	$H_{1}, H_{1 T}^{\perp}$
	LL	$D_{1 L L}$		$H_{1 L L}^{\perp}$
	LT	$D_{1 L T}$	$G_{1 L T}$	$H_{1 L T}^{\perp}, H_{1 L T}^{\prime}$
	TT	$D_{1 T T}$	$G_{1 T T}$	$H_{1 T T}^{\perp}, H_{1 T T}^{\prime}$

Results: quark TMDFFs

- all $H \mathrm{~s}, D_{1 T}^{\perp}, G_{1 L T}=0$
- $D_{1}=\frac{g^{4}}{48 \pi M^{4} N_{c} z} \frac{\mathbf{k}_{z^{2}}^{2} z^{2}\left(z^{2}-2 z+2\right)+2 M^{2}(z-1)^{2}}{\left[\mathbf{k}_{T}^{2} z^{2}-M^{2}(z-1)\right]^{2}} I_{0} \quad \leftarrow$ Echevarria et al. result
- $D_{1 L L}=\frac{g^{4}}{48 \pi M^{4} N_{c} z} \frac{3 M^{2}(z-1)^{2}-\mathbf{k}_{T}^{2} z^{2}\left(z^{2}-2 z+2\right)}{\left[\mathbf{k}_{T}^{2} z^{2}-M^{2}(z-1)\right]^{2}} I_{0}$
- $D_{L T}=\frac{-g^{4}}{32 \pi M^{2} N_{c}} \frac{(z-2)(z-1)}{\left[\mathbf{k}_{T}^{2} z^{2}-M^{2}(z-1)\right]^{2}} I_{0}$
- $D_{T T}=\frac{-g^{4}}{16 \pi M^{2} N_{c}} \frac{z(z-1)}{\left[\mathbf{k}_{T}^{2} z^{2}-M^{2}(z-1)\right]^{2}} I_{0}$
- $G_{1 L}=\frac{-g^{4}}{32 \pi M^{4} N_{c}} \frac{\mathbf{k}_{T}^{2} z^{2}(z-2)}{\left[\mathbf{k}_{T}^{2} z^{2}-M^{2}(z-1)\right]^{2}} I_{0}$
- $G_{1 T}^{\perp}=\frac{g^{4}}{16 \pi M^{2} N_{c}} \frac{z(z-1)}{\left[\mathbf{k}_{T}^{2} z^{2}-M^{2}(z-1)\right]^{2}} I_{0}$
- $G_{1 T T}$: too lengthy to display

Plotting a cross section

- example: unpolarized lepton beam/target, tensor polarized J / ψ

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma_{U U}\left(l+H \rightarrow l^{\prime}+\overrightarrow{\vec{h}}+X\right)}{\mathrm{d} x_{B} \mathrm{~d} z_{h} \mathrm{~d} y \mathrm{~d}^{2} \boldsymbol{P}_{h \perp}}= \\
& \frac{4 \pi \alpha^{2} s}{Q^{4}}\left(1-y-\frac{y^{2}}{2}\right) x_{B}\left\{S_{h L L} \boldsymbol{I}\left[f_{1} D_{1 L L}\right]\right. \\
& \quad+\left|S_{h L T}\right| \cos \left(\phi_{h L T}^{h}\right) \boldsymbol{I}\left[\frac{k^{x}}{M_{h}} f_{1} D_{1 L T}\right] \\
& \left.\quad+\left|S_{h T T}\right| \cos \left(2 \phi_{h T T}^{h}\right) \boldsymbol{I}\left[\frac{\left(k^{x}\right)^{2}-\left(k^{y}\right)^{2}}{M_{h}^{2}} f_{1} D_{1 T T}\right]\right\},
\end{aligned}
$$

- numerically convolve the TMDFF with numerical PDFs from results of Bastami et al., JHEP 06 (2019) 007
- use Gaussian for transverse dependence of PDFs

$$
\begin{aligned}
f_{\mathrm{TMD}}=\frac{1}{\pi \mathrm{av}} \exp \left(-\mathbf{k}_{T}^{2} / \mathrm{av}\right) f_{\mathrm{col}} \\
\quad \text { Bacchetta \& Mulders, PRD 62(2000) } 114004
\end{aligned}
$$

Plots: quark

- left: unpolarized quark, unpolarized J / ψ
- right: unpolarized quark, LL polarized J / ψ

Plots: gluon

- left: varying av from 0.1 to 0.9
- right: unpolarized gluon, unpolarized J / ψ

Conclusions

- we can match TMDFFs onto NRQCD
- only unpolarized have been calculated prior to now
- we have calculated the leading-order 18 fragmentation functions for production of polarized J / ψ by polarized partons
- we are in the process of computing cross sections that can be used as a new set of observables to extract gluon TMDs \& NRQCD LDMEs

